A Bayesian Approach to Unsupervised Semantic Role Induction

Ivan Titov and Alex Klementiev
Emergence of robust syntactic parsers [Collins 1999, Charniak 2001, Petrov and Klein 2006, McDonald 2005, Titov and Henderson 2007] for many languages has been one of the key successes of statistical NLP in recent years.

However, syntactic analyses are a long way from representing the meaning of sentences.

Specifically, they do not define **Who** did **What** to **Whom** (and How, Where, When, Why, …)

In other words, they do not specify the underlying predicate argument structure.
Semantic Role Labeling (SRL)

- Identification of arguments and their semantic roles
- Example: predicate *open*

 Jack opened the lock with a paper clip

Semantic Roles (PropBank-style):

- **PROTO-AGENT (A0)** – an initiator/doer in the event [Who?]
- **PROTO-PATIENT (A1)** – an affected entity [to Whom / to What?]
- **INSTRUMENT (A3)** – the entity manipulated to accomplish the goal
Though syntactic and lexical representations are often predictive of the predicate argument structure, this relation is far from trivial, consider *alternations*:

1. John broke the window
2. The window broke
3. The window was broken by John

Semantic Roles:

- **AGENT** – an initiator/doer in the event [Who?]
- **PATIENT** – an affected entity [to Whom / to What?]
Approaches to SRL

- **Supervised learning approaches** (e.g., [Gildea and Jurafsky, 2002; Johansson, 2008]):
 - Rely on large expert-annotated datasets (e.g., PropBank ~40k sentences)
 - Even then they provide very low coverage and are domain dependent
 - Annotated data is not available for many languages

- **Semi-supervised methods** – combine labeled and unlabeled data
 - Have relatively limited success so far (e.g., Furstenau and Lapata [09]; Deschacht and Moens [09])

- **Unsupervised methods**
 - This work, also Lang and Lapata [2010, 2011] and Grenager and Manning [2006]

Our main contributions:
- A Bayesian model of unsupervised SRL, substantially outperforming previous work
- Induction of a representation encoding alternation patterns shared across predicates
Outline

- Task and Approach Overview
 - Semantic role induction without labeled data
- Model and Inference
 - Overview of the distance-dependent CRPs
 - A hierarchical Bayesian model defining the process of joint generation of semantic, syntactic and lexical representations
- Evaluation
 - Results on a human-annotated corpus
Our task

- **Semantic role labeling involves 2 sub-tasks:**
 - Identification: identification of predicate arguments
 - Labeling: assignment of their semantic roles

Can be handled with heuristics (e.g. [Lang and Lapata, 2010])

Focus of this work

Our goal: induce semantic roles automatically from **unannotated** texts

- Assume that sentences are (auto-) annotated with syntactic trees
- Equivalent to clustering of argument occurrences (or “coloring” them)
Argument Keys

- We identify arg occurrences with syntactic signatures (argument keys) (as in Lang and Lapata [2011])

- E.g., some simple alternations like locative preposition drop

- Argument keys are designed so that to map mostly to a single role
- Instead of clustering occurrences we cluster argument keys
- Here, we would cluster \texttt{ACTIVE:RIGHT:OBJ} and \texttt{ACTIVE:RIGHT:PMOD_up} together
 - More complex alternations require multiples pairs of arg keys clustered
Factored Model

- Our first model (Factored) clusters argument keys for every predicate in isolation.

- These clusterings
 - are different as verbs admit different alternations
 - but expected to be similar: many alternations are common and licensed by many predicates (passivization, dativization, etc)
Consequently, propose an extension (Coupled) to induce the clusterings jointly.

- Do not split the learning data.
- The task is easier for some predicate than others.
- E.g., predicates `change` and `defrost` admit similar alternations but inducing it for `defrost` is easier: the set of possible argument fillers is more restricted.

This is done by inducing a similarity score for every pairs of argument keys.

- Similarities are learned, rather than specified by hand, as part of the inference process.
Selection preferences:

- Two argument signatures are likely to correspond to the same role if the corresponding sets of arguments are similar.

Duplicate roles are unlikely to occur. E.g. this coloring is a bad idea:

\[\text{John taught students math} \]

Predicates admit similar alternation patterns (reuse them)

How to encode this in a statistical model?
Outline

- Task and Approach Overview
 - Semantic role induction without labeled data
- Model and Inference
 - Overview of the distance-dependent CRPs
 - A hierarchical Bayesian model defining the process of joint generation of semantic, syntactic and lexical representations
- Evaluation
 - Results on a human-annotated corpus
A Prior on the Partition of Argument Keys

- Can use CRP to define a prior on the partition of argument keys:
 - The first customer (argument key) sits the first table (role)
 - m-th customer sits at a table according to:

\[
p(\text{previously occupied table } k | F_{m-1}, \alpha) \propto n_k
\]
\[
p(\text{next unoccupied table } | F_{m-1}, \alpha) \propto \alpha
\]

- An extension is distance-dependent CRP (dd-CRP):
 - m-th customer chooses a customer to sit with according to:

\[
p(\text{different customer } j | D, \alpha) \propto d_{m,j}
\]
\[
p(\text{itself } | D, \alpha) \propto \alpha
\]
A Prior on the Partition of Argument Keys

- Similarity graph D to couples distinct but similar clusterings of argument keys across predicates
 - Vertices are argument keys
 - Weights are similarity scores for each pair of argument keys

- We treat D as a latent random variable drawn from a prior over weighted graphs
 - First drawn from a prior
 - Used to generate each of the clusterings for every predicate

- We induce D automatically within the model
 - This is in contrast to all the previous work on dd-CRP where similarities were used to encode prior knowledge
Given a (large) collection of sentences annotated with (transformed) syntactic dependencies \(\{ x_i \}_{i=1}^{n} \)

We want to induce semantic roles \(\{ m_i \}_{i=1}^{n} \)

Define a family of generative models \(P(m, x | \theta) \) encoding our assumptions

In the prior probability \(P(\theta) \) over parameters \(\theta \), we encode our beliefs

We incorporate latent variables \(\mathcal{Z} \) (our latent weighted graph \(D \))

We want to find the maximum-a-posteriori clustering given the observable data

\[
\{ \hat{m}_i \}_{i=1}^{n} = \arg \max \int \prod_{i=1}^{n} P(m_i, x_i, z_i | \theta) P(\theta) d\theta dz
\]
Model parameters

(1) For roles, the distribution over argument fillers is sparse
 - We use a sparse prior, Hierarchical Dirichlet Processes [Teh et al, 05]

(2) Each predicate undergoes a small number of alternations
 - We use sparse Dirichlet priors to encode the linking

(3) The same semantic role rarely appears twice
 - Use a non-symmetric Dirichlet prior for the corresponding geom. distrib

(4) Argument key clusterings for different predicates are related
 - Induce a shared weighted graph used in a (distance-dependent) Chinese Restaurant Process [Blei and Frazer 11] prior for each clustering
for each predicate \(p = 1, 2, \ldots \):
- for each occurrence \(l \) of \(p \):
 - for every role \(r \in B_p \):
 - if \([n \sim \text{Unif}(0, 1)] = 1 \):
 - \(\text{GenArgument}(p, r) \)
 - while \([n \sim \psi_{p, r}] = 1 \):
 - \(\text{GenArgument}(p, r) \)

Factored model:
for each predicate \(p = 1, 2, \ldots \):
\[B_p \sim \text{CRP}(\alpha) \]

Coupled model:
\(D \sim \text{NonInform} \)
for each predicate \(p = 1, 2, \ldots \):
\[B_p \sim \text{dd-CRP}(\alpha, D) \]

for each predicate \(p = 1, 2, \ldots \):
- for each role \(r \in B_p \):
 - \(\theta_{p, r} \sim \text{DP}(\beta, H^A) \)
 - \(\psi_{p, r} \sim \text{Beta}(\eta_0, \eta_1) \)
Inference

- We use approximate maximum a-posteriori (MAP) decoding to induce semantic representations.
- Similar techniques have been used in the context of Dirichlet process mixtures.
- An EM-like inference algorithm for the Coupled model:
 - Start with uniform similarities
 - Iterate between
 - Inducing new clusterings m of argument keys for each predicate given the similarity graph D
 - Reestimate the similarity graph D

\[
\{\hat{m}_i\}_{i=1}^n = \arg \max_{\{m_i\}_{i=1}^n} \int \prod_{i=1}^n P(m_i, x_i | \theta) P(\theta) d\theta
\]
Outline

- Task and Approach Overview
 - Semantic role induction without labeled data
- Model and Inference
 - Overview of the distance-dependent CRPs
 - A hierarchical Bayesian model defining the process of joint generation of semantic, syntactic and lexical representations
- Evaluation
 - Results on a human-annotated corpus
Evaluation of semantic role induction

Purity measures the degree to which each induced role contains arguments sharing the same gold ("true") role

\[PU = \frac{1}{N} \sum_i \max_j |G_j \cap C_i| \]

Collocation evaluates the degree to which arguments with the same gold roles are assigned to a single induced role

\[CO = \frac{1}{N} \sum_j \max_i |G_j \cap C_i| \]

Report F1, harmonic mean of PU and CO

Benchmark Dataset: PropBank (CoNLL 08)
PropBank (CoNLL 08) with Gold Argument ID

Gold syntax

<table>
<thead>
<tr>
<th>Method</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic</td>
<td>78.6</td>
</tr>
<tr>
<td>SplitMergeGraphPart</td>
<td>78.8</td>
</tr>
<tr>
<td>Factored</td>
<td>82.6</td>
</tr>
<tr>
<td>Coupled</td>
<td>83.0</td>
</tr>
<tr>
<td>SyntF</td>
<td></td>
</tr>
</tbody>
</table>

Predicted syntax

<table>
<thead>
<tr>
<th>Method</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic</td>
<td>78.6</td>
</tr>
<tr>
<td>SplitMergeGraphPart</td>
<td>78.8</td>
</tr>
<tr>
<td>Factored</td>
<td></td>
</tr>
<tr>
<td>Coupled</td>
<td></td>
</tr>
<tr>
<td>SyntF</td>
<td></td>
</tr>
</tbody>
</table>

State-of-the-art methods

Our models

Deterministic mapping from syntactic relations
PropBank (CoNLL 08) with Predicted Argument ID

Gold syntax

Predicted syntax

Our models
Benchmark Dataset: PropBank (CoNLL 08)

Looking into induced graph encoding ‘priors’ over clustering arguments keys, the most highly ranked pairs encode (or partially encode)

- Passivization
- Near-equivalence of subordinating conjunctions and prepositions
 - E.g., whether and if
- Benefactive alternation
 - Martha carved a doll for the baby
 - Martha carved the baby a doll
- Dativization
 - I gave the book to Mary
 - I gave Mary the book
- Recovery of unnecessary splits introduced by argument keys

Encoded as (ACTIVE:RIGHT:OBJ_if, ACTIVE:RIGHT:OBJ_whether)
Conclusions

- We proposed a Bayesian model for unsupervised SRL
- Best reported scores on PropBank
- First to induce alternation patterns shared across predicates

- The proposed multi-task clustering approach is a general method
 - Can be used as a component in many Bayesian models for NLP and beyond

- The data, code and evaluation scripts will be available on our web-pages within a week or two.