Semi-Supervised Semantic Role Labeling: Approaching from an Unsupervised Perspective

Ivan Titov and Alex Klementiev

From Syntax to Semantics

- Emergence of robust syntactic parsers [Collins 1999, Charniak 2001; Petrov and Klein 2006, McDonald 2005; Titov and Henderson 2007] for many languages has been one of the key successes of statistical NLP in recent years
- However, <u>syntactic analyses</u> are a long way from representing the <u>meaning</u> of sentences

Specifically, they do not define Who did What to Whom (and How, Where, When, Why, \ldots)

In other words, they do not specify the underlying predicate argument structure

Semantic Role Labeling (SRL)

Identification of arguments and their semantic roles

Jack opened the lock with a paper clip

PROTO-AGENT (A0) an initiator/doer in the event [Who?] PROTO-PATIENT (A1) an affected entity [to Whom / to What?] INSTRUMENT (A3) the entity manipulated to accomplish the goal

Semantic Roles (PropBank-style)

Syntactic-Semantic Interface

Though syntactic and lexical representations are often predictive of the predicate argument structure, this relation is far from trivial, consider <u>alternations</u>:

John broke the window

The window broke

The window was broken by John

PROTO-AGENT (A0) an initiator/doer in the event [Who?] PROTO-PATIENT (A1) an affected entity [to Whom / to What?]

Approaches to SRL

- Supervised learning approaches (e.g., [Gildea and Jurafsky 2002; Johansson 2008])
 - Rely on large expert-annotated datasets (e.g., PropBank ~40k sentences)
 - Even then they provide very low coverage and are domain dependent
 - Annotated data is not available for many languages
- Semi-supervised methods combine labeled and unlabeled data
 - Largely, extensions of supervised methods
 - Have relatively limited success so far unannotated data adds little

Unsupervised methods

• E.g. [Lang and Lapata 2010, 2011; Titov and Klementiev 2012]

This work:

- Integrate labeled data into a state-of-the-art unsupervised system
- Compare performance of supervised/semi-supervised/unsupervised methods

Outline

- Motivation
- Unsupervised semantic role induction
- Model and inference
 - Overview of the distance-dependent CRPs
 - A Bayesian model defining the process of joint generation of semantic, syntactic and lexical representations

Semi-supervised extensions

- Adding labeled data
- Constructing informed priors

Evaluation

Unsupervised, supervised and semi-supervised Results

Unsupervised Semantic Role Induction

Goal: automatically induce semantic roles from unannotated data

- Assume that sentences are (auto-) annotated with syntactic trees
- Equivalent to clustering of argument occurrences (or "coloring" them)

Argument Keys

- We identify arg occurrences with syntactic signatures (argument keys)
- E.g., some simple alternations like locative preposition drop

• Argument keys are designed to map mostly to a single role

We treat semantic role labeling as clustering of argument keys (instead of clustering arguments)

E.g. in the example, we would cluster ACTIVE:RIGHT:OBJ and ACTIVE:RIGHT:PMOD_up

Our Goal

Start with a state-of-the-art unsupervised model [Titov and Klementiev, 2012]

Will call it BayesSRL

- The model induces clusterings of argument keys jointly across predicates
 - Intuition: clusterings are predicate specific, but similar, since many alternations are common across predicates (passivization, dativization, etc.)
 - The task is easier for some predicate than others
 - E.g., predicates *change* and *defrost* admit similar alternations but inducing it for *defrost* is easier: the set of possible argument fillers is more restricted
- Appropriate for semi-supervised setup
 - A reasonable approach should be able to propagate info across predicates

Our goal: extend the model to take advantage of labeled data

Outline

- Motivation
- Unsupervised semantic role induction
- Model and inference
 - Overview of the distance-dependent CRPs
 - A hierarchical Bayesian model defining the process of joint generation of semantic, syntactic and lexical representations

Semi-supervised extension

- Adding labeled data
- Constructing informed priors

Evaluation

Unsupervised, supervised and semi-supervised Results

A Prior on the Partition of Argument Keys

 $p(\text{previously occupied table } k|F_{m-1},\alpha) \propto n_k$

 $p(\text{next unoccupied table}|F_{m-1},\alpha) \propto \alpha$

- Can use CRP to define a prior on the partition of argument keys:
 - > The first customer (argument key) sits the first table (role)
 - m-th customer sits at a table according to:

6

2

State of the restaurant once m-I customers are seated

Encodes rich-get-richer dynamics but not much more than that

- An extension is distance-dependent CRP (dd-CRP):
 - m-th customer chooses a *customer* to sit with according to:

A Prior on the Partition of Argument Keys

- Similarity graph D couples distinct but similar clusterings of argument keys across predicates
 - Vertices are argument keys
 - Weights are similarity scores for each pair of argument keys
- We treat D as a latent random variable drawn from a prior over weighted graphs
 - First drawn from a prior
 - Used to generate each of the clusterings for every predicate
- We induce *D* automatically within the model
 - This is in contrast to all the previous work on dd-CRP where similarities were used to encode prior knowledge

Generative Story

for each predicate p = 1, 2, ...: $B_p \sim dd\text{-}CRP(\alpha, D)$ or each predicate p = 1, 2, ...for each role $r \in B_p$: $\theta_{p,r} \sim DP(\beta, H^{(A)})$ $\psi_{p,r} \sim Beta(\eta_0, \eta_1)$

Inference: iterate between clustering given similarity graph D, and re-estimating D (see [Titov and Klementiev 2012])

Outline

- Motivation
- Unsupervised semantic role induction
- Model and inference
 - Overview of the distance-dependent CRPs
 - A Bayesian model defining the process of joint generation of semantic, syntactic and lexical representations
- Semi-supervised extension
 - Adding labeled data
 - Constructing informed priors
- Evaluation
 - Unsupervised, supervised and semi-supervised Results

Exploiting Labeled Data

- Idea I: integrate labeled data into a generative model
 - Maximize joint likelihood of the observed data (i.e. clamp the observed labels)
 - BayesSRL makes hard clustering decisions

<u>Problem</u>: imperfect purity of arg keys + potential annotation errors may mean no possible clusterings may be compatible with labeled data

 \blacktriangleright Change generative story: with small probability ϵ , draw a random argument key

Exploiting Labeled Data

- <u>Idea II</u>: use labeled data to construct an informed prior over argument key clusterings
- We estimate:
 - How likely two arg keys k and k' are in the same role \neg

Use to set similarity $\hat{d}_{k,k'}$

• How likely a specific key k is to be left unclustered

... and concentration parameter for dd-CRP

Note: this is not model estimation but an extrinsic way to set priors

Exploiting Labeled Data to Construct Informed Priors

• Consider a single predicate:

- \blacktriangleright When generating a label, choose any other R-1 roles with small prob. γ
- Thus, the probability of labeled examples (role assignments) X_k for key k is:

$$P(X_k|g(k) = r) = (1 - \gamma)^{N_{k,r}} \left(\frac{\gamma}{R - 1}\right)^{N_k - N_{k,r}}$$

Exploiting Labeled Data to Construct Informed Priors

• The probability of labeled examples (role assignments) X_k for key k is:

$$P(X_k|g(k) = r) = (1 - \gamma)^{N_{k,r}} \left(\frac{\gamma}{R - 1}\right)^{N_k - N_{k,r}}$$

• The joint probability of two sets of labels X_k and $X_{k'}$

$$P(X_k, X_{k'}|g(k) = g(k'))$$

$$= \sum_{r} P(X_k|g(k) = r)P(X_{k'}|g(k') = r)$$
Same role (any)
$$P(X_k, X_{k'}|g(k) \neq g(k'))$$

$$= \sum_{r} P(X_k|g(k) = r) \sum_{r' \neq r} P(X_{k'}|g(k') = r')$$

The posterior that two keys belong to the same role P(g(k) = g(k')|X) is given by re-normalizing the above expressions

Exploiting Labeled Data to Construct Informed Priors

In dd-CRP, $\hat{d}_{kk'}^{(p)}$ encodes how much more likely k and k' are clustered together than by random chance, so we compute it as:

- Insufficient for infrequent (most) predicates, so we also compute $\hat{d}_{kk'}$ across predicates
- When generating partitions B_p , we multiply $\hat{d}^{(p)}$, \hat{d} and automatically induced d
- The other dd-CRP parameter $\hat{\alpha}_k^{(p)}$ can be computed similarly

Outline

- Motivation
- Unsupervised semantic role induction
- Model and Inference
 - Overview of the distance-dependent CRPs
 - A Bayesian model defining the process of joint generation of semantic, syntactic and lexical representations
- Semi-supervised extension
 - Adding labeled data
 - Constructing informed priors
- Evaluation
 - Unsupervised, supervised and semi-supervised Results

Benchmark Dataset: PropBank (CoNLL 09)

- > Train on one half (20,000 sentences) of the dataset, evaluate on the other
- Annotate with predicted dependencies [Johansson and Nugues, 2008]
- Select non-auxiliary verbs as predicates, identify arguments using the heuristic of [Lang and Lapata, 2011]
- Evaluate argument labeling stage using standard clustering measures: Purity, Collocation (and FI) and Homogeneity, Completeness (and V-Measure)
- Compare with Unsupervised [Titov and Klementiev, 2012], Supervised [Johansson and Nugues, 2008] and SyntF (syntactic function)

Argument Labeling Evaluation

Argument Labeling Evaluation

Conclusions

 Demonstrated that unsupervised techniques can be improved by eploiting a small amount of annotated data

Results competitive with supervised approaches in low resource setting

Uncovered deficiencies of unsupervised approaches

Overly coarse modeling of syntax-semantics interface results in lower asymptotic performance