Semi-Supervised Semantic Role Labeling: Approaching from an Unsupervised Perspective

Ivan Titov and Alex Klementiev
Emergence of robust syntactic parsers [Collins 1999, Charniak 2001; Petrov and Klein 2006, McDonald 2005; Titov and Henderson 2007] for many languages has been one of the key successes of statistical NLP in recent years.

However, syntactic analyses are a long way from representing the meaning of sentences. Specifically, they do not define *Who* did *What* to *Whom* (and *How*, *Where*, *When*, *Why*, …).

In other words, they do not specify the underlying predicate argument structure.
Semantic Role Labeling (SRL)

Identification of arguments and their semantic roles

Jack opened the lock with a paper clip

Proto-Agent (A0)

an initiator/doer in the event [Who?]

Proto-Patient (A1)

an affected entity [to Whom / to What?]

Instrument (A3)

the entity manipulated to accomplish the goal

Semantic Roles (PropBank-style)
Syntactic-Semantic Interface

Though syntactic and lexical representations are often predictive of the predicate argument structure, this relation is far from trivial, consider *alternations*:

John *broke* the window

The window *broke*

The window *was broken* by John

PROTO-AGENT (A0)
an initiator/doer in the event [Who?]

PROTO-PATIENT (A1)
an affected entity [to Whom / to What?]
Approaches to SRL

- Supervised learning approaches (e.g., [Gildea and Jurafsky 2002; Johansson 2008])
 - Rely on large expert-annotated datasets (e.g., PropBank ~40k sentences)
 - Even then they provide very low coverage and are domain dependent
 - Annotated data is not available for many languages

- Semi-supervised methods – combine labeled and unlabeled data
 - Largely, extensions of supervised methods
 - Have relatively limited success so far – unannotated data adds little

- Unsupervised methods
 - E.g. [Lang and Lapata 2010, 2011; Titov and Klementiev 2012]

This work:
- Integrate labeled data into a state-of-the-art unsupervised system
- Compare performance of supervised/semi-supervised/unsupervised methods
Outline

- Motivation
- Unsupervised semantic role induction
- Model and inference
 - Overview of the distance-dependent CRPs
 - A Bayesian model defining the process of joint generation of semantic, syntactic and lexical representations
- Semi-supervised extensions
 - Adding labeled data
 - Constructing informed priors
- Evaluation
 - Unsupervised, supervised and semi-supervised Results
Unsupervised Semantic Role Induction

- Semantic role labeling involves 2 sub-tasks:
 - **Identification**: identification of predicate arguments
 - **Labeling**: assignment of their semantic roles

Can be handled with heuristics (e.g. [Lang and Lapata, 2010])

Focus of this work

Goal: automatically induce semantic roles from unannotated data

- Assume that sentences are (auto-) annotated with syntactic trees
- Equivalent to clustering of argument occurrences (or “coloring” them)
Argument Keys

- We identify arg occurrences with syntactic signatures (argument keys)
- E.g., some simple alternations like locative preposition drop

![Diagram showing argument keys and examples]

- Argument keys are designed to map mostly to a single role

We treat semantic role labeling as clustering of argument keys (instead of clustering arguments)

- E.g. in the example, we would cluster ACTIVE:RIGHT:OBJ and ACTIVE:RIGHT:PMOD_up
Our Goal

- Start with a state-of-the-art unsupervised model [Titov and Klementiev, 2012]

- The model induces clusterings of argument keys jointly across predicates
 - Intuition: clusterings are predicate specific, but similar, since many alternations are common across predicates (passivization, dativization, etc.)
 - The task is easier for some predicate than others
 - E.g., predicates change and defrost admit similar alternations but inducing it for defrost is easier: the set of possible argument fillers is more restricted

- Appropriate for semi-supervised setup
 - A reasonable approach should be able to propagate info across predicates

Our goal: extend the model to take advantage of labeled data
Outline

- Motivation
- Unsupervised semantic role induction
 - Model and inference
 - Overview of the distance-dependent CRPs
 - A hierarchical Bayesian model defining the process of joint generation of semantic, syntactic and lexical representations
 - Semi-supervised extension
 - Adding labeled data
 - Constructing informed priors
- Evaluation
 - Unsupervised, supervised and semi-supervised Results
A Prior on the Partition of Argument Keys

- Can use CRP to define a prior on the partition of argument keys:
 - The first customer (argument key) sits the first table (role)
 - m-th customer sits at a table according to:
 \[
 p(\text{previously occupied table } k|F_{m-1}, \alpha) \propto n_k \\
 p(\text{next unoccupied table}|F_{m-1}, \alpha) \propto \alpha
 \]

- An extension is distance-dependent CRP (dd-CRP):
 - m-th customer chooses a customer to sit with according to:
 \[
 p(\text{different customer } j|D, \alpha) \propto d_{m,j} \\
 p(\text{itself}|D, \alpha) \propto \alpha
 \]
A Prior on the Partition of Argument Keys

- Similarity graph D couples distinct but similar clusterings of argument keys across predicates
 - Vertices are argument keys
 - Weights are similarity scores for each pair of argument keys

- We treat D as a latent random variable drawn from a prior over weighted graphs
 - First drawn from a prior
 - Used to generate each of the clusterings for every predicate

- We induce D automatically within the model
 - This is in contrast to all the previous work on dd-CRP where similarities were used to encode prior knowledge
for each predicate $p = 1, 2, \ldots$:
 for each occurrence l of p:
 for every role $r \in B_p$:
 if $[n \sim \text{Unif}(0,1)] = 1$:
 $\text{GenArgument}(p, r)$
 while $[n \sim \psi_{p,r}] = 1$:
 $\text{GenArgument}(p, r)$

$D \sim \text{NonInform}$
for each predicate $p = 1, 2, \ldots$:
 $B_p \sim \text{dd-CRP} (\alpha, D)$

for each predicate $p = 1, 2, \ldots$:
 for each role $r \in B_p$:
 $\theta_{p,r} \sim \text{DP}(\beta, H^{(A)})$
 $\psi_{p,r} \sim \text{Beta}(\eta_0, \eta_1)$

Inference: iterate between clustering given similarity graph D, and re-estimating D (see [Titov and Klementiev 2012])
Outline

- Motivation
- Unsupervised semantic role induction
- Model and inference
 - Overview of the distance-dependent CRPs
 - A Bayesian model defining the process of joint generation of semantic, syntactic and lexical representations
- Semi-supervised extension
 - Adding labeled data
 - Constructing informed priors
- Evaluation
 - Unsupervised, supervised and semi-supervised Results
Exploiting Labeled Data

- **Idea I**: integrate labeled data into a generative model
 - Maximize joint likelihood of the observed data (i.e. clamp the observed labels)
 - BayesSRL makes hard clustering decisions

Problem: imperfect purity of arg keys + potential annotation errors may mean no possible clusterings may be compatible with labeled data

- Change generative story: with small probability ϵ, draw a random argument key

<table>
<thead>
<tr>
<th>GenArgument(p, r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b \sim \text{Bernoulli}(\epsilon)$</td>
</tr>
<tr>
<td>if $b = 1$:</td>
</tr>
<tr>
<td>$k_{p,r} \sim H^K$</td>
</tr>
<tr>
<td>else :</td>
</tr>
<tr>
<td>$k_{p,r} \sim \text{Unif}(1, \ldots,</td>
</tr>
<tr>
<td>$x_{p,r} \sim \theta_{p,r}$</td>
</tr>
</tbody>
</table>

- Noisy arg key
- Draw arg key
- Draw arg filler
Idea II: use labeled data to construct an informed prior over argument key clusterings

We estimate:

- How likely two arg keys k and k' are in the same role
- How likely a specific key k is to be left unclustered

Note: this is not model estimation but an extrinsic way to set priors
Consider a single predicate:

- When generating a label, choose any other $R - 1$ roles with small prob. γ
- Thus, the probability of labeled examples (role assignments) X_k for key k is:

$$P(X_k | g(k) = r) = (1 - \gamma)^{N_{k,r}} \left(\frac{\gamma}{R - 1} \right)^{N_k - N_{k,r}}$$
The probability of labeled examples (role assignments) X_k for key k is:

$$P(X_k|g(k) = r) = (1 - \gamma)^{N_k,r} \left(\frac{\gamma}{R - 1} \right)^{N_k - N_k,r}$$

The joint probability of two sets of labels X_k and $X_{k'}$:

$$P(X_k, X_{k'}|g(k) = g(k')) = \sum_r P(X_k|g(k) = r)P(X_{k'}|g(k') = r)$$

$$P(X_k, X_{k'}|g(k) \neq g(k')) = \sum_r P(X_k|g(k) = r) \sum_{r' \neq r} P(X_{k'}|g(k') = r')$$

The posterior that two keys belong to the same role $P(g(k) = g(k')|X)$ is given by re-normalizing the above expressions.
In dd-CRP, $\hat{d}_{kk'}^{(p)}$ encodes how much more likely k and k' are clustered together than by random chance, so we compute it as:

$$
\hat{d}_{kk'}^{(p)} = \frac{P(g(k) = g(k')|X)}{P(g(k) = g(k'))}
$$

Posterior prob. that two argkeys are in the same role

Prior that two argkeys are in the same role = $1/R$

Insufficient for infrequent (most) predicates, so we also compute $\hat{d}_{kk'}$ across predicates

When generating partitions B_p, we multiply $\hat{d}^{(p)}$, \hat{d} and automatically induced d

The other dd-CRP parameter $\hat{\alpha}_k^{(p)}$ can be computed similarly
Outline

- Motivation
- Unsupervised semantic role induction
- Model and Inference
 - Overview of the distance-dependent CRPs
 - A Bayesian model defining the process of joint generation of semantic, syntactic and lexical representations
- Semi-supervised extension
 - Adding labeled data
 - Constructing informed priors
- Evaluation
 - Unsupervised, supervised and semi-supervised Results
Benchmark Dataset: PropBank (CoNLL 09)

- Train on one half (20,000 sentences) of the dataset, evaluate on the other
- Annotate with predicted dependencies [Johansson and Nugues, 2008]
- Select non-auxiliary verbs as predicates, identify arguments using the heuristic of [Lang and Lapata, 2011]
- Evaluate argument labeling stage using standard clustering measures: Purity, Collocation (and F1) and Homogeneity, Completeness (and V-Measure)
- Compare with Unsupervised [Titov and Klementiev, 2012], Supervised [Johansson and Nugues, 2008] and SyntF (syntactic function)
Argument Labeling Evaluation

- **Semisup**
- **Unsupervised**
- **Supervised**
- **SyntF**

Effective for low resource setting

Coarse granularity means lower asymptotic performance
Argument Labeling Evaluation

One point on the curve: 300 labeled sentences

- Supervised
- Unsupervised
- SemiSup
- Semisup-l
- Semisup-p
- SyntF

Semusup

without labeled data in gen story

without informed prior
Conclusions

- Demonstrated that unsupervised techniques can be improved by exploiting a small amount of annotated data.

Results competitive with supervised approaches in low resource setting

- Uncovered deficiencies of unsupervised approaches.

Overly coarse modeling of syntax-semantics interface results in lower asymptotic performance.