Ivan Titov and Alexandre Klementiev

Saarland University

From Syntax to Semantics

- Robust syntactic parsers [Collins 1999, Charniak 2001, Petrov and Klein 2006, McDonald 2005, Titov and Henderson 2007] available for tens of languages
- However, <u>syntactic analyses</u> are a long way from representing the <u>meaning</u> of sentences

Specifically, they do not define Who did What to Whom (and How, Where, When, Why, ...)

In other words, they do not specify the underlying predicate argument structure

Semantic Role Labeling (SRL)

Identification of arguments and their semantic roles:

AGENT

an initiator/doer in the event [Who?]

Jack opened the lock with a paper clip

INSTRUMENT

the entity manipulated to accomplish the goal

PATIENT

an affected entity [to Whom / to What?]

Syntactic-Semantic Interface

Though syntactic and lexical representations are often predictive of the predicate argument structure, this relation is far from trivial, consider <u>alternations</u>:

John broke the window

The window broke

The window was broken by John

Semantic Roles:

AGENT – an initiator/doer in the event [Who?]

PATIENT – an affected entity [to Whom / to What?]

Approaches to SRL

- Supervised learning approaches (e.g., [Gildea and Jurafsky, 2002; Johansson, 2008])
 - Large datasets are scarce and provide very low coverage
- Semi-supervised methods combine labeled and unlabeled data success (e.g., [Furstenau and Lapata, 2009; Deschacht and Moens, 2009])
 - Relatively limited success so far
- Crosslingual annotation projection techniques (e.g. [Pado and Lapata 2009; van der Plas et. al. 2011])
 - Uses labeled data

Unsupervised methods (e.g. [Titov and Klementiev, 2011, 2012; Lang and Lapata, 2010, 2011; Grenager and Manning, 2006])

Why Crosslingual Semantics?

Improvements for individual languages

Crosslingual (unknown) regularities provide a signal for learning

- Crosslingual learning has been successful in syntax [Kuhn, 2004; Snyder et. al., 2009] and morphology [Snyder and Barzilay, 2008]
- Should be even more beneficial for inducing semantics, as semantics is generally better preserved in translation

Can encode directly to drive learning: e.g. one-to-one correspondences between semantic representations

- Induced semantic relationships across multiple languages
 - Immediately useful for multilingual problems such as machine translation and multilingual web search

Why Should Crosslingual Work for Semantics?

Helps resolve ambiguity and provide additional evidence

Peter <u>blamed</u> Mary for planning a theft

Peter blamed planning a theft on Mary

Linkings may be difficult to learn with monolingual data alone

Peter beschuldigte Mary einen Diebstahl zu planen

Foreign language translations would resolve these ambiguities

Our Approach to Crosslingual SRL

We induce semantic roles across languages using unsupervised monolingual data and parallel texts

- First to consider the crosslingual unsupervised setting for SRL
- Begin with our state-of-the-art nonparametric Bayesian monolingual SRL model [Titov and Klementiev, EACL 2012]
- Propose an agreement penalty for joint learning across languages
- Efficient approximate inference in the multilingual setting

Outline

- Introduction and Motivation
- Monolingual unsupervised semantic role labeling
 - Task definition
 - Overview of the nonparametric Bayesian model
- Multilingual extension
 - Role alignment penalty for joint learning across languages
 - Model inference
- Empirical evaluation
 - Data and metrics
 - Results

Monolingual Unsupervised SRL

- Semantic role labeling involves 2 sub-tasks:
 - Identification: identification of predicate arguments

Labeling: assignment of their sematic roles

Can be handled with heuristics (e.g. [Lang and Lapata, 2010])

Focus of this work

Goal: induce semantic roles automatically from unannotated texts

- Assume that sentences are (auto-) annotated with syntactic trees
- Equivalent to clustering of argument occurrences (or "coloring" them)

Role Labeling as Clustering of Argument Keys

- Identify arg occurrences with syntactic signatures or argument keys [Lang and Lapata, 2011]
 - **E.g.**, some simple alternations like locative preposition drop

Argument keys are designed so that to map mostly to a single role

We treat labeling of semantic roles as clustering of argument keys

- ▶ Here, we would cluster ACTIVE:RIGHT:OBJ and ACTIVE:RIGHT:PMOD up together
 - More complex alternations require multiples pairs of arg keys clustered

Signals for Semantic Role Induction

- Selection preferences:
 - Two argument keys are likely to correspond to the same role if the corresponding sets of arguments are similar
- Duplicate roles are unlikely to occur. E.g. this coloring is a bad idea:

John taught students math

Predicates admit similar alternation patterns ("reuse" them)

How to encode this in a statistical model?

Generative Story for Monolingual Model

At least one argument

Draw first argument

Continue generation

Draw more arguments

Decide on arg key clustering for each predicate $p=1,2,\cdots$:
for each occurrence l of p:
for every role $r \in B_p$:
if $[n \sim Unif(0,1)] = 1$:
GenArgument(p,r)while $[n \sim \psi_{p,r}] = 1$:
GenArgument(p,r)

for each predicate p = 1, 2, ...: $B_p \sim CRP(\alpha)$

GenArgument(p, r)

 $k_{p,r} \sim Unif(1, \dots, |r|)$ $x_{p,r} \sim \theta_{p,r}$ Draw argument key

Draw argument filler

for each predicate p = 1, 2, ...: for each role $r \in B_p$: $\theta_{p,r} \sim DP(\beta, H^{(A)})$ $\psi_{p,r} \sim Beta(\eta_0, \eta_1)$

Model factorizes over predicates, can consider a coupled model [Titov and Klementiev, EACL 2012]

Outline

- Introduction and Motivation
- Monolingual unsupervised semantic role labeling
 - ▶ Task definition
 - Overview of the model nonparametric Bayesian model
- Multilingual extension
 - ▶ Role alignment penalty for joint learning across languages
 - Model inference
- Empirical evaluation
 - Data and metrics
 - Results

- We have additional multilingual resources: texts translated in multiple languages (parallel data)
 - Parliament proceedings, books, etc.
 - Can use standard machine translation techniques to induce word alignments

- We use aligned data and induce semantics jointly in multiple languages
 - Alignments are only used during learning

Consider an example blame alternation

Consider an example blame alternation

- Learning the corresponding linking is not trivial
 - Selectional preferences for these roles are not very restrictive
 - Selectional restrictions for Cognizer and Evaluee are overlapping

Consider an example blame alternation

However, the alternation does not transfer to German

Both forms are likely to have the same translation

- We want induced roles for aligned sentences to be consistent
 - Favoring one-to-one mapping between aligned roles in both languages

- We want induced roles for aligned sentences to be consistent
 - Favoring one-to-one mapping between aligned roles in both languages

- We want induced roles for aligned sentences to be consistent
 - Favoring one-to-one mapping between aligned roles in both languages

- We want induced roles for aligned sentences to be consistent
 - Favoring one-to-one mapping between aligned roles in both languages

- We want induced roles for aligned sentences to be consistent
 - Favoring one-to-one mapping between aligned roles in both languages

- We want induced roles for aligned sentences to be consistent
 - Favoring one-to-one mapping between aligned roles in both languages

In our example: roles induced for German will be transferred to English resulting in perfect accuracy on both languages

Crosslingual Penalty

- We want roles for aligned sentences to be consistent in languages (1) and (2)
- Favor one-to-one mapping between aligned roles in both languages
 - Penalize for the lack of isomorphism between the sets of roles in aligned predicates
 - Penalty is dependent on the degree of violation
- We augment the joint probability with a penalty term computed on parallel data:

Number of times role $r^{(1)}$ is predicted

Choose the best pairing

Fraction of times role $r^{(1)}$ is aligned to $r^{(2)}$

$$\sum_{r(1)} f_{r(1)} \max_{r(2)} \log \hat{P}(r^{(2)}|r^{(1)})$$

Similar to the KL expectation criteria [McCallum et al, 08]

Inference

- We use approximate maximum a-posteriori (MAP) decoding to induce semantic representations
 - ▶ Efficient: can make use of much more data
- In monolingual setup (for each predicate):
 - Greedy procedure for clustering of argument keys

Inference

- We use approximate maximum a-posteriori (MAP) decoding to induce semantic representations
 - Efficient: can make use of much more data
- In <u>crosslingual</u> setup (for each aligned predicate pair):
 - Induce roles for the first language (monolingual setup), then take them into account (through the penalty term) when inducing roles in the second language
 - Repeat in reverse direction
 - Choose the solution yielding a higher objective value

i.e. begin with the side which is easier to cluster and provides more clues

Outline

- ▶ Introduction and Motivation
- Monolingual unsupervised semantic role labeling
 - ▶ Task definition
 - Overview of the model nonparametric Bayesian model
- Multilingual extension
 - ▶ Role alignment penalty for joint learning across languages
 - Model inference
- Empirical evaluation
 - Data and metrics
 - Results

Benchmark Dataset: PropBank (CoNLL 08/09)

Semantic role induction on English

Purity measures the degree to which each induced role contains arguments sharing

the same gold ("true") role

$$PU = rac{1}{N} \sum_i \max_j |G_j \cap C_i|$$
 Gold role Induced role

 Collocation evaluates the degree to which arguments with the same gold roles are assigned to a single induced role

$$CO = \frac{1}{N} \sum_{j} \max_{i} |G_j \cap C_i|$$

Optimal deterministic mapping from syntactic relations

Experimental setup:

- Semantic Role Labeling: identify and cluster predicate arguments
- Induce jointly in two languages for predicates aligned in parallel data

Conclusions and Future Work

- First to demonstrate benefits of crosslingual setup for unsupervised semantic induction
- Proposed a technique applicable to any probabilistic semantic model
- Efficient inference procedure
- Future work
 - Demonstrate method's viability for other languages
 - May need to induce argument keys instead of designing them for each new language

The work is partially supported by a Google Research Award and the MMCI Cluster of Excellence. Thanks to Mikhail Kozhevnikov, Alexis Palmer, Manfred Pinkal and Caroline Sporleder for helpful comments.