
SIGIR’08 LR4IR Workshop

A Framework for Unsupervised Rank Aggregation

Alexandre Klementiev, Dan Roth, and Kevin Small
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801

{klementi,danr,ksmall}@uiuc.edu

ABSTRACT
The need to meaningfully combine sets of rankings often
comes up when one deals with ranked data. Although a
number of heuristic and supervised learning approaches to
rank aggregation exist, they generally require either domain
knowledge or supervised ranked data, both of which are ex-
pensive to acquire. To address these limitations, we pro-
pose1 a mathematical and algorithmic framework for learn-
ing to aggregate (partial) rankings in an unsupervised set-
ting, and instantiate it for the cases of combining permu-
tations and combining top-k lists. Furthermore, we also
derive an unsupervised learning algorithm for rank aggre-
gation (ULARA), which approximates the behavior of this
framework by directly optimizing the weighted Borda count.
We experimentally demonstrate the effectiveness of both ap-
proaches on the data fusion task.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models

General Terms
Algorithms, Theory

Keywords
Ranking, Rank Aggregation, Distance-Based Models

1. INTRODUCTION
Consider the scenario where each member of a panel of

judges independently generates a (partial) ranking over a
set of items while attempting to reproduce a true underly-
ing ranking according to their level of expertise. This setting
motivates a fundamental machine learning and information

1This paper unifies and extends work from [18] and [19]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’08 LR4IR Workshop, July 24, 2008, Singapore.
Copyright 2008 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

retrieval (IR) problem - the necessity to meaningfully aggre-
gate preference rankings into a joint ranking. The IR com-
munity refers to this as data fusion, where a joint ranking
is derived from the outputs of multiple retrieval systems,
possibly from several heterogeneous sources. A canonical
data fusion task is meta-search where the aim is to aggre-
gate Web search query results from several engines into a
more accurate ranking.

One impediment to solving rank aggregation tasks is the
high cost associated with acquiring full or partial preference
information, making supervised approaches (e.g. [22, 23])
of limited utility. For data fusion, efforts to overcome this
difficulty include applying domain specific heuristics [26] or
collecting such preference information indirectly (e.g. using
clickthrough data [15]). In order to address this limitation,
we consider the task of learning to aggregate (partial) rank-
ings without supervision.

Analyzing ranked data is an extensively studied problem
in statistics [25], economics [2], information retrieval [26],
and machine learning literature [1]. Mallows [24] introduced
a distance-based model for fully ranked data and investi-
gated its use with Kendall’s and Spearman’s metrics. The
model was later generalized to other distance functions and
for use with partially ranked data [4]. [20] proposed a multi-
parameter extension, where multiple modal rankings (e.g.
expert opinions) are available and use their formalism for su-
pervised ensemble learning; they also analyzed their model
for partially ranked data [21].

The first key contribution of our work is the derivation
of an EM-based algorithm for learning the parameters of
the extended Mallows model without supervision. We in-
stantiate the model with appropriate distance functions for
two important scenarios: combining permutations and com-
bining top-k lists. In the context of defining distances be-
tween rankings, various metrics have been proposed and ana-
lyzed [4, 9]. Distances over top-k lists, i.e. rankings over the
k most preferable objects, receive particular attention in the
IR community [10]. [12] show that a class of distance func-
tions between full rankings, such as Kendall’s and Cayley’s
metrics, decompose into a sum of independent components
allowing for efficient parameter estimation of the standard
Mallows model.

The second key contribution of our work is the derivation
of a novel decomposable distance function for top-k lists.
We show it to be a generalization of the Kendall metric
and demonstrate that it can be decomposed, enabling us
to estimate the parameters of the extended Mallows model
efficiently.

The third contribution is the derivation of an unsupervised
learning algorithm for rank aggregation (ULARA), which
approximates the learning of the parameters of this model by
directly learning the parameters of a weighted Borda count
through an optimization procedure.

The remainder of the paper is organized as follows: section
2 formalizes distance-based ranking models and introduces
relevant notation. Section 3 derives our EM-based algorithm
for learning model parameters and specifies the requirements
for efficient learning and inference. Section 4 instantiates the
framework for two common scenarios: permutations (full
rankings) and top-k lists. Section 5 describes our approx-
imation method based on an optimization of the weighted
Borda count. Section 6 experimentally demonstrates the
model’s effectiveness in both cases. Finally, section 7 con-
cludes the work and gives ideas for future directions.

2. DISTANCE-BASED RANKING MODELS

2.1 Notation and Definitions
Let {x1, . . . , xn} be a set of objects to be ranked, i.e. as-

signed rank-positions 1, . . . , n, by a judge. We denote the
resulting permutation π = (π(1), . . . , π(n)), where π(i) is
the rank assigned to object xi. Correspondingly, we use
π−1(j) to denote the index of the object assigned to rank j.

Let Sn be the set of all n! permutations over n items, and
let d : Sn × Sn → R be a distance function between two
permutations. We will require d(·, ·) to be a right-invariant
metric [6]: in addition to the usual properties of a metric, we
will also require that the value of d(·, ·) does not depend on
how the set of objects is indexed. In other words, d(π, σ) =
d(πτ, στ) ∀π, σ, τ ∈ Sn, where πτ is defined by πτ(i) =
π(τ(i)).

In particular, note that the right-invariance property im-
plies that d(π, σ) = d(ππ−1, σπ−1) = d(e, σπ−1), where
e = (1, . . . , n) is the identity permutation. That is, the value
of d does not change if we re-index the objects such that
one of the permutations becomes e and the other ν = σπ−1.
Borrowing the notation from [12] we abbreviate d(e, ν) as
D(ν). In a later section, when we define ν as a random vari-
able, we may treat D(ν) = D as a random variable as well:
whether it is a distance function or a r.v. will be clear from
the context.

2.2 Mallows Models
While a large body of work on ranking models exists in

statistics literature, of particular interest to us are the dis-
tance based conditional models first introduced in [24]. Let
us give a brief review of the formalism and elucidate some of
the its properties relevant to our work. The model generates
a judge’s rankings according to:

p(π|θ, σ) =
1

Z(θ, σ)
exp(θ d(π, σ)) (1)

where Z(θ, σ) =
P
π∈Sn

exp(θ d(π, σ)) is a normalizing con-
stant. The parameters of the model are θ ∈ R, θ ≤ 0 and
σ ∈ Sn, referred to as the dispersion and the location pa-
rameters, respectively. The distribution’s single mode is the
modal ranking σ; the probability of ranking π decreases ex-
ponentially with distance from σ. When θ = 0, the distri-
bution is uniform, and it becomes more concentrated at σ
as θ decreases.

One property of (1) is that the normalizing constant Z(θ, σ)
does not depend on σ due to the right invariance of the dis-
tance function:

Z(θ, σ) = Z(θ) (2)

Let us denote the moment generating function of D under
(1) as MD,θ(t), and as MD,0(t) under the uniform distribu-
tion (θ = 0). Since (1) is an exponential family,

MD,θ(t) =
MD,0(t+ θ)

MD,0(θ)

Therefore,

Eθ(D) =
1

MD,0(θ)

dMD,0(t+ θ)

dt

˛̨̨̨
t=0

=
d ln(MD,0(t))

dt

˛̨̨̨
t=θ

(3)

[12] note that if a distance function can be expressed as
D(π) =

Pm
i=1 Vi(π), where Vi(π) are independent (with π

uniformly distributed) with m.-g.f. Mi(t), then MD,0(t) =Qm
i=1Mi(t). Consequently, (3) gives:

Eθ(D) =
d

dt

mX
i=1

lnMi(t)

˛̨̨̨
˛
t=θ

(4)

We will call such distance functions decomposable and will
later use (4) in section 4 in order to estimate θ efficiently.

2.3 Extended Mallows Models
[20] propose a natural generalization of the Mallows model

to the following conditional model:

p(π|θ,σ) =
1

Z(θ,σ)
p(π) exp

KX
i=1

θi d(π, σi)

!
(5)

where σ = (σ1, . . . , σK) ∈ SKn , θ = (θ1, . . . , θK) ∈ RK ,
θ ≤ 0, p(π) is a prior, and normalizing constant Z(θ,σ) =P
π∈Sn

p(π) exp(
PK
i=1 θi d(π, σi)).

The rankings σi may be thought of as votes of K individ-
ual judges, e.g. rankings returned by multiple search engines
for a particular query in the meta-search setting. The free
parameters θi represent the degree of expertise of the indi-
vidual judges: the closer the value of θi to zero, the less the
vote of the i-th judge affects the assignment of probability.

Under the right-invariance assumption on d, we can use
property (2) to derive the following generative story under-
lying the extended Mallows model:

p(π,σ|θ) = p(π)

KY
i=1

p(σi|θi, π) (6)

That is, π is first drawn from prior p(π). σ is then
made up by drawing σ1 . . . σK independently from K Mal-
lows models p(σi|θi, π) with the same location parameter
π.

It is straightforward to generalize both Mallows models
[4], and the extended Mallows models to partial rankings by
constructing appropriate distance functions. We will assume
this more general setting in the following section.

3. LEARNING AND INFERENCE
In this section, we derive the general formulation of Ex-

pectation Maximization algorithm for parameter estimation
of the extended Mallows models (5), and suggest a class of
distance functions for which learning can be done efficiently.
We then describe an inference procedure for the model.

3.1 EM Background and Notation
Let us start with a brief overview of Expectation Maxi-

mization (EM) [5], mostly to introduce some notation. EM
is a general method of finding maximum likelihood estimate
of parameters of models which depend on unobserved vari-
ables. The EM procedure iterates between:

E step: estimate the expected value of complete data log-
likelihood with respect to unknown data Y, observed data
X , and current parameter estimates θ′:

T (θ, θ′) = E[log p(X ,Y|θ)|X , θ′]

M step: choose parameters that maximize the expectation
computed in the E step:

θ′ ← argmax
θ

T (θ, θ′)

In our setting, the K > 2 experts generate votes σ corre-
sponding to the unobserved true ranking π. We will see mul-
tiple instances of σ so the observed data we get are ranking
vectors X = {σ(j)}Qj=1 with the corresponding true (unob-

served) rankings Y = {π(j)}Qj=1.

In the meta-search example, σ
(j)
i is the ranking of the i-th

(of the total of K) search engine for the j-th (of the total
of Q) query. The (unknown) true ranking corresponding to

the j-th query is denoted as π(j).

3.2 EM Derivation
We now use the generative story (6) to derive the following

propositions (proofs omitted due to space constraints):

Proposition 1. The expected value of the complete data
log-likelihood under (5) is:

T (θ,θ′) =
X

(π(1),...,π(Q))∈SQ
n

Lθ Uθ′ (7)

where the complete data log-likelihood Lθ is:

Lθ =

QX
j=1

log p(π(j))−Q
KX
i=1

logZ(θi)+

QX
j=1

KX
i=1

θi d(π(j), σ
(j)
i)

and the marginal distribution of the unobserved data Uθ′

is:

Uθ′ =

QY
j=1

p
“
π(j)|θ′,σ(j)

”
Proposition 2. T (θ,θ′) is maximized by θ = (θ1, . . . , θK)

such that:

Eθi(D) =
X

(π(1),...,π(Q))

∈SQ
n

1

Q

QX
q=1

d(π(q), σ
(q)
i)

!
Uθ′ (8)

That is, on each iteration of EM, we need to evaluate the
right-hand side (RHS) of (8) and solve the LHS for θi for
each of the K components.

3.3 Model Learning and Inference
At first, both evaluating the RHS of (8) and solving the

LHS for θi seem quite expensive (> n!). While true in gen-
eral, we can make the learning tractable for a certain type
of distance functions.

In particular, if a distance function can be decomposed
into a sum of independent components under the uniform
distribution of π (see section 2.2), property (4) may enable
us to make the estimation of the LHS efficient. In Section
4, we show two examples of such distance functions (for
permutations and top-k lists).

In order to estimate the RHS, we use the Metropolis al-
gorithm [14] to sample from (5). The chain proceeds as
follows: denoting the most recent value sampled as πt, two
indices i, j ∈ {1, . . . , n} are chosen at random and the ob-
jects π−1

t (i) and π−1
t (j) are transposed forming π′t. If a =

p(π′t|θ,σ)/p(πt|θ,σ) ≥ 1 the chain moves to π′t. If a < 1,
the chain moves to π′t with probability a; otherwise, it stays
at πt. [7] demonstrates rapid convergence for Mallows model
with Cayley’s distance. While no convergence results are
known for the extended Mallows model with arbitrary dis-
tance, we found experimentally that the MC chain converges
rapidly with the two distance functions used in this work
(10n steps in experiments of Section 6). As the chain pro-
ceeds, we update the distance value with the incremental
change due to a single transposition, instead of recomputing
it from scratch, resulting in substantial savings in computa-
tion.

Alternatively, we also found (Section 6.1) that combin-
ing rankings σi with the Borda count weighted by exp(−θi)
provides a reasonable and quick estimate for evaluating the
RHS.

Sampling or the suggested alternative RHS estimation
used during training is also used for model inference.

4. MODEL APPLICATION
Overcoming the remaining hurdle (the LHS estimation) in

learning the model efficiently depends on the definition of a
distance function. We now consider two particular types of
(partial) rankings: permutations, and top-k lists. The latter
is the case when each judge specifies a ranking over k most
preferable objects out of n. For instance, a top-10 list may
be associated with the 10 items on the first page of results
returned by a web search engine. For both permutations
and top-k lists, we show distance functions which satisfy
the decomposability property (Section 2.2), which, in turn,
allows us to estimate the LHS of (8) efficiently.

4.1 Combining Permutations
Kendall’s tau distance [16] between permutations π and σ

is a right-invariant metric defined as the minimum number
of pairwise adjacent transpositions needed to turn one per-
mutation into the other. Assuming that one of the permu-
tations, say σ, is the identity permutation e (we can always
turn one of the permutations into e by re-indexing the ob-
jects without changing the value of the distance, see Section
2.1), it can be written as:

DK(π) =

n−1X
i=1

Vi(π)

where2 Vi(π) =
P
j>i I(π−1(i) − π−1(j)). Vi are inde-

pendent and uniform over integers [0, n− i] [11] with m.-g.f.

Mi(t) = 1
n−i+1

Pn−i
k=0 e

tk. Following [12], equation (4) gives:

Eθ(DK) =
neθ

1− eθ −
nX
j=1

jeθj

1− eθj (9)

Eθ(DK) is monotone decreasing, so line search for θ will
converge quickly.

4.2 Combining Top-k Lists
We now propose an extension of the Kendall’s tau dis-

tance to top-k lists, i.e. the case where π and σ indicate
preferences over different (possibly, overlapping) subsets of
k ≤ n objects.

Let us denote by Fπ and Fσ the elements in π and σ
respectively, noting that |Fπ| = |Fσ| = k. We define Z =
Fπ ∩ Fσ, |Z| = z, P = Fπ \ Fσ, and S = Fσ \ Fπ (note that
|P | = |S| = k−z = r). We treat π and σ as rankings, which
in our case means that the smallest index will indicate the
top, i.e. contain the most preferred object. For notational
convenience, let us now define the augmented ranking π̃ as π
augmented with the elements of S assigned the same index
(k + 1), one past the bottom of the ranking as shown on
Figure 1 (σ̃ is defined similarly). We will slightly abuse our
notation and denote π̃−1(k+ 1) to be the set of elements in
position (k + 1).

Kendall’s tau distance DK is naturally extended from per-
mutations to augmented rankings.

Definition 1. Distance D̃K(π̃, σ̃) between augmented rank-
ings π̃ and σ̃ is the minimum number of adjacent transposi-
tions needed to turn π̃ into σ̃.

It can be shown that D̃K(π̃, σ̃) is a right-invariant met-
ric, thus we will again simplify the notation denoting it as
D̃K(π̃). This distance can be decomposed as:

D̃K(π̃) =

kX
i=1

π̃−1(i)∈Z

Ṽi(π̃) +

kX
i=1

π̃−1(i)/∈Z

Ũi(π̃) +
r(r + 1)

2

where

Ṽi(π̃) =

kX
j=i

π̃−1(j)∈Z

I(π̃−1(i)− π̃−1(j)) +

X
j∈π̃−1(k+1)

I(π̃−1(i)− j)

Ũi(π̃) =

kX
j=i

π̃−1(j)∈Z

1

2I(x) = 1 if the variable x > 0 or a predicate x is true, and
0 otherwise.

k−1

7

k

3

k+1

1

k+1

k+1

k

k−1

k−2

4

3

1

2

2 4 k−1k+1

k

k−1

k−2

4

3

1

2

k+1 k+1k+1

σ~π~

k−2

k

1

k+1

2

3

4

Figure 1: An example of augmented permutations π̃ (left)
and identity augmented permutation σ̃ (right, in natural

order). Grey boxes are objects in π but not in σ. D̃K(π̃) is
the minimum number of adjacent transpositions needed to
turn π̃ into σ̃: namely, bring all grey boxes into the position
k+1 and put the remaining k objects in their natural order.

Decomposing D̃K(π̃), the second term is the minimum
number of adjacent transpositions necessary to bring the r
elements not in Z (grey boxes on Figure 1) to the bottom
of the ranking. The third term is the minimum number
of adjacent transpositions needed to switch them with the
elements in π̃−1(k + 1), which would then appear in the
correct order in the bottom r positions. Finally, the first
term is the adjacent transpositions necessary to put the k
elements now in the list in the natural order.

It can be shown that the random variable summands com-
prising D̃K(π̃) are independent when π̃ is uniformly dis-

tributed. Furthermore, Ṽi and Ũj are uniform over inte-
gers [0, k − i] and [0, z], with moment generating functions

1
k−i+1

Pk−i
j=0 e

tj and 1
z+1

Pz
j=0 e

tj , respectively. Assuming

z > 0, and r > 0 equation (4) gives:

Eθ(D̃K) =
keθ

1− eθ −
kX

j=r+1

jejθ

1− ejθ +

r(r + 1)

2
− r(z + 1)

eθ(z+1)

1− eθ(z+1)
(10)

If r = 0 (i.e. the augmented rankings are over the same
objects), both the distance and the expected value reduce
to the Kendall distance results. Also, if z = 0 (i.e. the

augmented rankings have no objects in common), D̃K =

Eθ(D̃K) = k(k + 1)/2, which is the smallest number of ad-
jacent transpositions needed to move the r = k objects in
π̃−1(k + 1) into the top k positions.

Eθ(D̃K) decreases monotonically, so we can again use
line search to find the value of θ. Notice that the expected
value depends on the value of z (the number of common
elements between the two permutations). We will compute
the average value of z as we estimate the RHS of (8) and
use it to solve the LHS for θ.

5. DIRECTLY OPTIMIZING THE WEIGHTED
BORDA COUNT

A common approach to aggregate a single set of votes is
to find a permutation with the minimum average Kendall
tau distance to those votes. Computing such a ranking,

Algorithm 1 Training

1: Input: {σ(q)}Qq=1, {κi}Ki=1, λ, ν
2: w← 0
3: t← 1
4: for q ← 1, . . . , Q do
5: for j ← 1, . . . , n do

6: if K
(q)
j ≥ ν then

7: µ(q)(j) =

P
i∈K(q)

j

σ
(q)
i (j)

K
(q)
j

8: for i← 1, . . . ,K do

9: if σ
(q)
i (j) ≤ κi then

10: ∇i ←
h
σ

(q)
i (j)− µ(q)(j)

i2
11: else

12: ∇i ←
h
κi + 1− µ(q)(j)

i2
13: wti ← wt−1

i + λ · ∇i
14: t← t+ 1
15: Normalize(w)

16: Output: w ∈ [0, 1]K

Figure 2: An unsupervised algorithm for rank aggregation:
Training.

known as the Kemeny-optimal aggregation, is known to be
NP-hard [8]. However, the well known Borda count method
provides a good approximation [3] and is known to mini-
mize the average Spearman’s distance (11) to the constituent
rankings.

dS(σ, π) =

nX
i=1

(σ(i)− π(i))2 (11)

Empirically, we found (see Section 6.1) the Borda count
method augmented with weights representing relative ranker
quality to be a good alternative in the inference step of
Section 3.3. Here, we explore this idea further and pro-
pose a simple unsupervised algorithm (ULARA) to learn
these weights directly by minimizing the empirical average
(weighted) Spearman’s distance between the votes of the
constituent rankers and a surrogate true ranking. As be-
fore, we extend the algorithm to handle the top-k setting.

More formally, for an item xj and a given query, let ρB(j) =PK
i=1 σi(j); ∀j = 1, . . . , n be the Borda count yielding a

predicted true ranking π̂B = argsortj=1,...,n ρB(j). Corre-

spondingly, let ρW (j) =
PK
i=1 wi · σi(j);∀j = 1, . . . , n be

the weighted Borda count yielding a predicted true ranking
π̂W = argsortj=1,...,n ρW (j). Furthermore, denote Kj as the
set of rankers which placed the item xj above their respective

set threshold values κi, and |Kj | = Kj =
PK
i=1 I(σi(j) ≤

κi). Finally, let µ(j) =

P
i∈Kj

σi(j)

Kj
denote the mean ranking

of xj . The values µ = (µ(1), . . . , µ(n)) will be used in com-
puting the distance (11) and will play the role of a surrogate
true ranking. Slightly abusing the notation, we will use µ in
place of a permutation when computing distance dS(σ, µ).

We aim to learn the weights w minimizing the average
weighted Spearman’s distance with the additional restriction
that they are positive and add up to one, i.e.

Algorithm 2 Evaluation

1: Input: w,σ, {κi}Ki=1

2: for j ← 1, . . . , n do
3: ρW (j)← 0
4: for i← 1, . . . ,K do
5: if σi(j) ≤ κi then
6: ρW (j)← ρW (j) + wi · σi(j)
7: else
8: ρW (j)← ρW (j) + wi · (κi + 1)
9: π̂W ← argsortj=1,...,n ρW (j)

10: Output: π̂W

Figure 3: An unsupervised algorithm for rank aggregation:
Evaluation.

argmin
w

PQ
q=1

PK
i=1 wi dS(σ

(q)
i , µ(q)) (12)

s.t.
PK
i=1 wi = 1; ∀i, wi ≥ 0. (13)

Informally, the weights should be small for rankers which
tend to disagree with the others, and vice versa.

5.1 The algorithm
As opposed to optimizing this problem directly, we use

iterative gradient descent [17] to derive an online learning
algorithm 1. It takes as input a set of rankings for each
query {σ(q)}Qq=1 along with the associated ranking function

threshold values {κi}Ki=1, a learning rate λ, and a significance
threshold value ν, all discussed in greater detail below. For

each query q and item xj , the rankings (σ
(q)
1 (j), . . . , σ

(q)
K (j))

are used to calculate the mean µ(q)(j) (line 7), the gradient
is determined (line 10), and the weight update is made (line
13). Once all of these updates are completed, the weight
vector is normalized (line 15) to generate a probability vec-
tor for evaluation in algorithm 2. The remaining discussion
entails algorithmic details for practical situations:

• Missing Rankings (κi) - For most settings, there are
more items in the instance space than the individual
ranking functions will return. In the top-k setting,
for instance, systems return rankings over a subset
of documents and most corpus documents remain un-
ranked. We denote this threshold value as κi, noting
that rankers may have different thresholds. If an item
does not appear in a ranking, we substitute κi + 1
for update calculations (line 12), assuming unranked
items are ranked just below the last ranked item.

• Variable Number of Rankers (ν) - Some items may
only appear in the rankings of a subset of judges. If
less than ν rankers, as defined by the user, rank an
item, no updates are made for this item (line 6).

6. EXPERIMENTAL EVALUATION
We demonstrate the effectiveness of our approach for per-

mutations and top-k lists considered in Section 4, as well
the performance of the alternative algorithm proposed in
Section 5.

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 D
k

to
 tr

ue
 p

er
m

ut
at

io
n

EM Iteration

Sampling
Weighted

True

Figure 4: Permutations: learning performance of the model
(averaged over 5 runs) when RHS is estimated using sam-
pling (Sampling), the proposed weighted Borda count ap-
proximation (Weighted), or the true permutation (True).
As expected, the model trained with the sampling method
achieves better performance, but the approximation method
performs quite well too and converges faster.

6.1 Permutations
We first consider the scenario of aggregating permuta-

tions. For this set of experiments, the votes of K = 10
individual experts were produced by sampling standard Mal-
lows models (1), with the same location parameter σ∗ = e
(an identity permutation over n = 30 objects), and concen-
tration parameters θ∗1,2 = −1.0, θ∗3,..,9 = −0.05, and θ∗10 = 0
(the latter generating all permutations uniformly randomly).
The models were sampled 10 times, resulting in Q = 10 lists
of permutations (one for each “query”), which constituted
the training data.

In addition to the sampling procedure described in Section
3.3 to estimate the RHS of (8), we also tried the following ap-
proximation. For each “query” q, K constituent votes were
combined into a single permutation σ̂q with the weighted
Borda method (defined in Section 5). The weights are com-
puted using the current values of the model parameters as
exp(−θi). The rationale is that the smaller the absolute
value of θi, the lower the relative quality of the ranker, and
the less it should contribute to the aggregate vote. Finally,
the RHS for the i-th component is computed as the distance
from its vote to σ̂q averaged over all Q queries.

We also tried using the true permutation σ∗ in place of
σ̂q to see how well the learning procedure can do.

At the end of each EM iteration, we sampled the cur-
rent model (5), and computed the Kendall’s tau distance
between the generated permutation to the true σ∗. Fig-
ure 4 shows the model performance when sampling and the
proposed approximation are used to estimate the RHS. Al-
though the convergence is much faster with the approxima-
tion, the model trained with the sampling method achieves
better performance approaching the case when the true per-
mutation is known.

6.2 Top-k lists
In order to estimate the model’s performance in the top-k

list combination scenario, we performed data fusion experi-

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 20 22 24 26 28 30 32 34 36 38

P
re

ci
si

on

Number of random rankers Kr

Aggregation (Top-10)
CombMNZrank (Top-10)

Aggregation (Top-30)
CombMNZrank (Top-30)

Figure 5: Top-k lists: precision of the aggregate ranker as
a function of the number of random component rankers Kr

in top 10 and top 30 documents. Our algorithm learns to
discount the random components without supervision sub-
stantially improving over CombMNZrank.

ments using the data from the ad-hoc retrieval shared task
of the TREC-3 conference [13]. Our goal here is to examine
the behavior of our approach as we introduce poor judges
into the constituent ranker pool. In this shared task, 40 par-
ticipants submitted top-1000 ranking over a large document
collection for each of the 50 queries. For our experiments,
we used top-100 (k = 100) rankings from K = 38 of the par-
ticipants (two of the participants generated shorter rankings
for some of the queries and were not used) for all Q = 50
queries. We replaced a specific number Kr ∈ [0,K] of the
participants with random rankers (drawing permutations of
k documents from the set of documents returned by all par-
ticipants for a given query uniformly randomly). We then
used our algorithm to combine top-k lists from Kr random
rankers and (K −Kr) participants chosen at random.

We measure performance using the precision in top-{10, 30}
documents as computed by trec eval3 from the TREC con-
ference series. As a baseline, we use CombMNZrank, a vari-
ant of a commonly used CombMNZ [26]. Given a query q
for each document xj in the collection it computes a score

ρMNZ(j) = Kj ·
PK
i=1(k+1−σ(q)

i (j)), where σ
(q)
i (j) = (k+1)

if the document doesn’t appear in the ranking. Kj is the
total number of participants which place xj in their top-k
rankings. The aggregate ranking is obtained by sorting doc-
uments according to their scores in descending order. Essen-
tially, CombMNZrank is a weighted Borda count method
where the weighting is determined by the number of judges
that rank the given document. Intuitively, the more judges
rank a document highly, the higher it appears in the aggre-
gate ranking.

Figure 5 shows that our algorithm learns to discount the
random components without supervision substantially im-
proving over the baseline as Kr → K.

6.3 Model Dispersion Parameters
In order to demonstrate the relationship between the learned

dispersion parameters of the model, θ, and the relative per-

3Available at http://trec.nist.gov/

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

P
re

ci
si

on

Recall

BlankName
CombMNZrank

citya1
INQ101
CrnlEA
westp1
pircs1

ETH002

Figure 6: Experimental results for data fusion of the re-
trieval systems submitted to the TREC-3 shared task. While
CombMNZrank only negligibly outperforms the top system,
ULARA performs significantly better than any component
system at multiple recall levels.

Table 1: MRPR of the four search engines and their corre-
sponding model parameters; the results suggest a correlation
between the magnitude of the dispersion parameters and the
relative system performance.

S1 S2 S3 S4
θ -0.065 0.0 -0.066 -0.049
MRPR 0.86 0.43 0.82 0.78

formance of the constituent rankers, we also conducted a
meta-search experiment. First, we generated Q = 50 queries
which result in an unambiguous most relevant document
and submitted them to K = 4 commercial search engines.
For each engine, we kept the 100 highest ranked documents
(10 pages of 10 documents each) after removing duplicates,
and unified URL formatting differences between engines.
We measure performance with Mean Reciprocal Page Rank
(MRPR), which we define as mean reciprocal rank of the
page number on which the correct document appears.

Table 1 shows MRPR of the four search engines and
their corresponding model parameters. As expected, the
results suggest a correlation between the magnitude of the
dispersion parameters and the relative system performance,
implying that their values may also be used for unsuper-
vised search engine evaluation. Finally, our model achieves
MRPR = 0.92 beating all of the constituent rankers.

6.4 Top-k lists with ULARA
We also studied the ad-hoc retrieval shared task of the

TREC-3 conference with the alternative algorithm we pro-
posed in Sect. 5, demonstrating competitive behavior with
significantly faster running times. In this experiment, we
used the top-1000 rankings for each of the 50 queries from all
K = 40 participants, setting κ = 1000. ULARA was used to
combine the rankings of the individual research groups into
an aggregate ranking π̂W . As previously, performance is
quantified by the precision/recall curves and mean average
precision metric as provided by the software (trec_eval)
from the TREC conference series.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5 10 15 20 25 30 35 40

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Number of random rankings

BlankName, ν = 10
BlankName, ν = 20
BlankName, ν = 30

CombMNZrank

Figure 7: Experimental results where a number of TREC-
3 systems are replaced with random rankings, demonstrat-
ing robustness of ULARA. While the performance of the
CombMNZrank algorithm deteriorates rapidly, ULARA
performs well even when more than half of the systems are
replaced.

Figure 6 shows the results of the top individual submis-
sions, CombMNZrank, and ULARA for the data fusion
task. We observe that ULARA outperforms all component
ranking functions as well as CombMNZrank. More signifi-
cantly, while CombMNZrank performs slightly better than
the top system, ULARA achieves a relative increase in aver-
age precision of 4.0% at the top ranking, 6.4% at 0.1 recall,
and 6.0% at 0.2 recall over CombMNZrank.

In the second experiment, as in Sec. 6.2, we demon-
strate the robustness properties of ULARA by adding poor
judges to constituent ranker pool. As before, we replaced
a specified number of the K = 40 systems with a rankings
drawn uniformly from all documents returned by all sys-
tems for a given query, denoted as random rankings. As
figure 7 shows, the mean average precision of ULARA ver-
sus CombMNZrank is consistently superior, becoming more
pronounced as the number of random rankings is increased.
To further explore this effect, we varied ν and observe that
as more noise is added, ν must be lowered to accommodate
the lack of agreement between rankers. Even under rela-
tively extreme cicumstances, ULARA produces an aggregate
ranking competitive with a noise free system; however, un-
like the approach in Section 4, it does require manual setting
of additional parameters.

7. CONCLUSIONS AND FUTURE WORK
We propose a formal mathematical and algorithmic frame-

work for aggregating (partial) rankings without supervision.
We derive an EM-based algorithm for the extended Mallows
model and show that it can be made efficient for the right-
invariant decomposable distance functions. We instantiate
the framework and experimentally demonstrate its effective-
ness for the important cases of combining permutations and
combining top-k lists. In the latter case, we introduce the
notion of augmented permutation and a novel decompos-
able distance function for efficient learning. In addition,
we present an unsupervised algorithm for rank aggregation
(ULARA) which approximates the mathematical framework

by directly optimizing a weighted Borda count.
A natural extension of the current work is to instantiate

our framework for other types of partial rankings, as well as
to cases where ranking data is not of the same type. The
latter is of practical significance since often preference infor-
mation available is expressed differently by different judges
(e.g. top-k rankings of different lengths).

Another direction for future work is to extend the rank ag-
gregation model to accommodate position dependence. In
IR, more importance is generally given to results appear-
ing higher in the rankings. Within our framework one may
be able to design a distance function reflecting this require-
ment. Additionally, the quality of votes produced by in-
dividual components may depend on the rank, e.g. in the
top-k scenario some rankers may be better at choosing few
most relevant objects, while others may tend to have more
relevant objects in the k selected but may not rank them
well relative to one another. This case may be modeled by
adding a dependency on rank to the dispersion parameters
of the model.

Acknowledgments
We would like to thank Ming-Wei Chang, Sariel Har-Peled,
Vivek Srikumar, and the anonymous reviewers for their valu-
able suggestions. This work is supported by NSF grant ITR
IIS-0428472, DARPA funding under the Bootstrap Learning
Program and by MIAS, a DHS-IDS Center for Multimodal
Information Access and Synthesis at UIUC.

8. REFERENCES
[1] W. W. Cohen, R. E. Schapire, and Y. Singer.

Learning to order things. Journal of Artificial
Intelligence Research, 10:243–270, 1999.

[2] V. Conitzer. Computational Aspects of Preference
Aggregation. PhD thesis, Carnegie Mellon University,
2006.

[3] D. Coppersmith, L. Fleischer, and A. Rudra. Ordering
by weighted number of wins gives a good ranking for
weighted tournaments. In Proc of the Annual ACM
Symposium on Discrete Algorithms, pages 776–782,
2006.

[4] D. E. Critchlow. Metric Methods for Analyzing
Partially Ranked Data, volume 34 of Lecture Notes in
Statistics. Springer-Verlag, 1985.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society,
39:1–38, 1977.

[6] P. Diaconis and R. L. Graham. Spearman’s footrule as
a measure of disarray. Journal of the Royal Statistical
Society, 39:262–268, 1977.

[7] P. Diaconis and L. Saloff-Coste. What do we know
about the Metropolis algorithm? Journal of Computer
and System Sciences, 57:20–36, 1998.

[8] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar.
Rank aggregation methods for the web. In Proc. of the
International World Wide Web Conference (WWW),
pages 613–622, 2001.

[9] V. Estivill-Castro, H. Mannila, and D. Wood. Right
invariant metrics and measures of presortedness.
Discrete Applied Mathematics, 42:1–16, 1993.

[10] R. Fagin, R. Kumar, and D. Sivakumar. Comparing
top k lists. SIAM Journal on Discrete Mathematics,
17:134–160, 2003.

[11] W. Feller. An Introduction to Probability Theory and
Its Applications, volume 1. John Wiley and Sons, Inc.,
1968.

[12] M. A. Fligner and J. S. Verducci. Distance based
ranking models. Journal of the Royal Statistical
Society, 48:359–369, 1986.

[13] D. Harman. Overview of the third Text REtrieval
Conference (TREC-3), 1994.

[14] W. K. Hastings. Monte carlo sampling methods using
markov chains and their applications. Biometrika,
57(1):97–109, April 1970.

[15] T. Joachims. Unbiased evaluation of retrieval quality
using clickthrough data. In SIGIR Workshop on
Mathematical/Formal Methods in Information
Retrieval, 2002.

[16] M. G. Kendall. A new measure of rank correlation.
Biometrika, 30(1/2):81–93, Jun. 1938.

[17] J. Kivinen and M. K. Warmuth. Additive versus
exponentiated gradient updates for linear prediction.
In Proc, of the Annual ACM Symposium on Theory of
Computing, pages 209–218, 1995.

[18] A. Klementiev, D. Roth, , and K. Small. An
unsupervised learning algorithm for rank aggregation.
In Proc. of the European Conference on Machine
Learning (ECML), pages 616–623, 2007.

[19] A. Klementiev, D. Roth, , and K. Small. Unsupervised
rank aggregation with distance-based models. In Proc.
of the International Conference on Machine Learning
(ICML), 2008.

[20] G. Lebanon and J. Lafferty. Cranking: Combining
rankings using conditional probability models on
permutations. In Proc. of the International Conference
on Machine Learning (ICML), 2002.

[21] G. Lebanon and J. Lafferty. Conditional models on the
ranking poset. In The Conference on Advances in
Neural Information Processing Systems (NIPS),
volume 15, pages 431–438, 2003.

[22] D. Lillis, F. Toolan, R. Collier, and J. Dunnion.
Probfuse: A probabilistic approach to data fusion. In
Proc. of the International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 139–146, 2006.

[23] Y.-T. Liu, T.-Y. Liu, T. Qin, Z.-M. Ma, and H. Li.
Supervised rank aggregation. In Proc. of the
International World Wide Web Conference (WWW),
2007.

[24] C. L. Mallows. Non-null ranking models. Biometrika,
44:114–130, 1957.

[25] J. I. Marden. Analyzing and Modeling Rank Data.
CRC Press, 1995.

[26] J. A. Shaw and E. A. Fox. Combination of multiple
searches. In Text REtrieval Conference (TREC), pages
243–252, 1994.

