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Named Entity recognition (NER) is an important part of many natural language
processing tasks. Current approaches often employ machine learning techniques and
require supervised data. However, many languages lack such resources. This paper1

presents an (almost) unsupervised learning algorithm for automatic discovery of
Named Entities (NEs) in a resource free language, given a bilingual corpora in which
it is weakly temporally aligned with a resource rich language. NEs have similar time
distributions across such corpora, and often some of the tokens in a multi-word
NE are transliterated. We develop an algorithm that exploits both observations
iteratively. The algorithm makes use of a new, frequency based, metric for time
distributions and a resource free discriminative approach to transliteration. Seeded
with a small number of transliteration pairs, our algorithm discovers multi-word
NEs, and takes advantage of a dictionary (if one exists) to account for translated or
partially translated NEs. We evaluate the algorithm on an English-Russian corpus,
and show high level of NEs discovery in Russian.

1.1 Introduction

Named Entity recognition has received significant attention in NLP research in
recent years since it is regarded as a significant component of higher level NLP tasks
such as information distillation and question answering. Most modern approaches to

1. This paper unifies and extends work from (Klementiev and Roth (2006a)) and (Kle-
mentiev and Roth (2006b)).
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Figure 1.1 Temporal histograms for Hussein (top), its Russian transliteration (middle),
and of the word Russia (bottom).

NER employ machine learning techniques, which require supervised training data.
However, for many languages, these resources do not exist. Moreover, it is often
difficult to find linguistic expertise either for annotating data or specifying domain
knowledge. On the other hand, comparable multilingual data (such as multilingual
news streams) are becoming increasingly available (Section 1.4). Unique properties
of such corpora may allow us to transfer annotation across to resource poor domains,
relieving the supervision bottleneck.

In this work, we make two independent observations about Named Entities
encountered in such corpora, and use them to develop an algorithm that extracts
pairs of NEs across languages. Specifically, given a bilingual corpora that is weakly
temporally aligned, and a capability to annotate the text in one of the languages
with NEs, our algorithm identifies the corresponding NEs in the second language
text, and annotates them with the appropriate type, as in the source text.

The first observation is that NEs in one language in such corpora tend to co-
occur with their counterparts in the other. E.g., Figure 1.1 shows a histogram of
the number of occurrences of the word Hussein and its Russian transliteration in our
bilingual news corpus spanning years 2001 through late 2005. One can see several
common peaks in the two histograms, the largest one being around the time of the
beginning of the war in Iraq. The word Russia, on the other hand, has a distinctly
different temporal signature. We can exploit such weak synchronicity of NEs across
languages to associate them. In order to score a pair of entities across languages,
we compute the similarity of their time distributions.
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English NE Russian NE

lilic liliq
fletcher fletqer
bradford br�dford
isabel izabel~
hoffmann gofman
kathmandu katmandu

Figure 1.2 Example English NEs and their transliterated Russian counterparts.

The second observation is that NEs often contain or are entirely made up of words
that are phonetically transliterated or have a common etymological origin across
languages (e.g. parliament in English and parlament, its Russian translation),
and thus are phonetically similar. Figure 1.2 shows an example list of NEs and
their possible Russian transliterations.

Approaches that attempt to use these two characteristics separately to identify
NEs across languages would have significant shortcomings. Transliteration based
approaches require a good model, typically handcrafted or trained on a clean set of
transliteration pairs. On the other hand, time sequence similarity based approaches
would incorrectly match words which happen to have similar time signatures (e.g.,
Taliban and Afghanistan in recent news).

We introduce an algorithm called co-ranking, which exploits these observations
simultaneously to match NEs on one side of the bilingual corpus to their counter-
parts on the other.

We first train a transliteration model on single-word NEs. During training, for a
given NE in one language, the current model chooses a list of top ranked translitera-
tion candidates in another language. A Discrete Fourier Transform (Arfken (1985))
based metric (Section 1.3.1) is then used to re-rank the list and choose the candi-
date best temporally aligned with the given NE. Finally, pairs of source language
NEs and the top candidates from the re-ranked candidate lists are used for the next
iteration of the transliteration model training.

Once the model is trained, NE discovery proceeds as follows. For a given NE,
the transliteration model selects a candidate list for each constituent word. If a
dictionary is available, each such candidate list is augmented with translations (if
they exist). Translations will be the correct choice for some NE words (e.g. for queen
in Queen Victoria), and transliterations for others (e.g. Bush in Steven Bush). We
expect temporal sequence alignment to resolve many of such ambiguities. Temporal
alignment score is used to re-rank translation/transliteration candidate lists for each
constituent word. The top candidates from each re-ranked list are then merged into
a possible target language NE. Finally, we verify that the candidate NE actually
occurs in the target corpus.

A major challenge inherent in discovering transliterated NEs is the fact that a
single entity may be represented by multiple transliteration strings. One reason is
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language morphology. For example, in Russian, depending on a case being used,
the same noun may appear with various endings. Another reason is the lack of
transliteration standards. Again, in Russian, several possible transliterations of an
English entity may be acceptable, as long as they are phonetically similar to the
source.

Thus, in order to rely on the time sequences we obtain, we need to be able
to group variants of the same NE into an equivalence class, and collect their
aggregate mention counts. We would then score time sequences of these equivalence
classes. For instance, we would like to count the aggregate number of occurrences
of {Herzegovina, Hercegovina} on the English side in order to map it accurately to
the equivalence class of that NE’s variants we may see on the Russian side of our
corpus (e.g. {Gercegovina, Gercegovinu, Gercegoviny, Gercegovino�}). In the
rest of the paper, whenever we refer to a Named Entity or an NE constituent word,
we imply its equivalence class.

One of the objectives of this work was to use as little of the knowledge of both
languages as possible. In order to effectively rely on the quality of time sequence
scoring, we used a simple, knowledge poor approach to group NE variants for the
languages of our corpus (Section 1.3.1). Although we expect that better use of
language specific knowledge would improve the results, it would defeat one of the
goals of this work.

A demo of this work, as well as the software and the data used in the experiments
are available at http://L2R.cs.uiuc.edu/∼cogcomp/.

1.2 Previous Work

There has been other work on discovering NEs automatically with minimal su-
pervision. Both Cucerzan and Yarowsky (1999), and Collins and Singer (1999)
present algorithms to obtain NEs from untagged corpora. However, they focus on
the classification stage of already segmented entities, and make use of contextual
and morphological clues that require knowledge of the language beyond the level
we want to assume with respect to the target language.

The use of similarity of time distributions for information extraction, in general,
and NE extraction, in particular, is not new. Hetland (2004) surveys recent methods
for scoring time sequences for similarity. Shinyama and Sekine (2004) used the
idea to discover NEs, but in a single language, English, across two news sources.
Moreover, we use a different temporal distribution similarity function and show it
to be better in Section 1.4.3.

A large amount of previous work exists on transliteration models. Most are
generative and consider the task of producing an appropriate transliteration for a
given word, and thus require considerable knowledge of the languages. For example,
AbdulJaleel and Larkey (2003); Jung et al. (2000) train English-Arabic and English-
Korean generative transliteration models, respectively. Knight and Graehl (1997)
build a generative model for backward transliteration from Japanese to English.
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Sproat et al. (2006) produce transliterations by combining the scores of temporal
and phonetic transliteration models, whereas we also propose a method to train a
transliteration model with little supervision.

While generative models are often robust, they tend to make independence
assumptions that do not hold in data. The discriminative learning framework
advocated by Roth (1998, 1999) as an alternative to generative models is now
used widely in NLP, even in the context of word alignment (Taskar et al. (2005);
Moore (2005)). We make use of it here too, to learn a discriminative transliteration
model that requires little knowledge of the target language.

Bilingual lexicon extraction from non-parallel corpora (e.g. Rapp (1995); Koehn
and Knight (2002); Déjean et al. (2002)) is the line of research most related to
our work. Focusing on Named Entities, however, allows us to exploit properties
specific to them (transliteration and temporal alignment). Furthermore, NEs hold
particular significance to NLP tasks such as information extraction.

1.3 Co-Ranking : An Algorithm for NE Discovery

In essence, the algorithm we present (Figure 1.3) uses temporal alignment as a
supervision signal to iteratively train a transliteration modelM. On each iteration,
for each NE in the source language corpus S it selects a list of top ranked
transliteration candidates from the target language corpus T according to the
current model (line 6). It then uses temporal alignment (with thresholding) to
re-rank the list and select the best transliteration candidate for the next round of
training (lines 8, and 10).

Similarly, in testing or discovery (Figure 1.4), candidate lists are collected (line 6)
for each constituent word of each source NE using the trained modelM. Optionally,
the lists NE i

T are augmented with the dictionary translations of the respective
source word (line 7). The lists are then re-ranked without thresholding (line 9), and
collected into a multi-word target NE candidate ET . Finally, we discard ET which
do not actually occur (in any order of the constituent words) in target corpus T .

1.3.1 Time sequence generation and matching

In order to generate a time sequence for a given word, we sort the set of (time-
stamped) documents of our corpus into a sequence of equally sized temporal bins.
We then count the number of occurrences of the word in each bin, and normalize
the sequence.

We use a method called the F-index (Hetland (2004)) to implement the score

similarity function (Figure 1.3, line 8, and Figure 1.4, line 9). We first run a
Discrete Fourier Transform on a time sequence to extract its Fourier expansion
coefficients. The score of a pair of time sequences is then computed as a Euclidean
distance between their expansion coefficient vectors. We compare this approach to
two commonly used alternative metrics in Section 1.4.3.
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As we mentioned in the introduction, an NE may map to more than one
transliteration in another language. Identification of the entity’s equivalence class
of transliterations is important for accurately obtaining its time sequence.

In order to keep to our objective of requiring as little language knowledge as
possible, we took a rather simplistic approach for both languages of our corpus.
For Russian, two words were considered variants of the same NE if they share a
prefix of size five or longer. Each unique word had its own equivalence class for the
English side of the corpus, although, in principal, more sophisticated approaches
to group entity mentions (such as in Li et al. (2004)) could be incorporated. A
cumulative distribution was then collected for such equivalence classes.

1.3.2 Transliteration model

Unlike most of the previous work considering generative transliteration models, we
take the discriminative approach. Indeed, we do not need to generate transliter-
ations for unseen Named Entities. Instead, we aim to match NEs in the source
language to their counterparts present in the target language side of our corpus in
order to transfer annotation.

We train a linear model to decide whether a word ET ∈ T is a transliteration of
an NE ES ∈ S. The words in the pair are partitioned into a set of substrings sS
and sT up to a particular length (including the empty string ). Couplings of the
substrings (sS , sT ) from both sets produce features we use for training. Note that
couplings with the empty string represent insertions/omissions.

Consider the following example: (ES , ET ) = (powell, pau�ll). We build a feature
vector from this example in the following manner:

Algorithm Co-ranking [training]
Input: Bilingual corpus (S, T ), set of named entities NES from S, threshold θ
Output: Transliteration model M
1. Initialize M.
2. ∀E ∈ NES , collect time distribution QES .
3. repeat
4. D ← ∅.
5. for each ES ∈ NES
6. Use M to collect candidates NET ∈ T with high translit. scores.
7. Collect time distribution QET for each candidate in NET .
8. Select candidate ET ∈ NET with the best ω = score(QES ,QET ).
9. if ω > θ
10. D ←D

S
{(ES , ET )}.

11. Use D to train M
12. until Discovered training set D no longer changes between iterations.
13. returnM.

Figure 1.3 Iterative transliteration model training with single-word NEs.
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Algorithm Co-ranking [testing]
Input: Bilingual corpus (S, T ), set of named entities NES from S, transliteration model

M, dictionary dict (otional)
Output: Set of NE pairs D from S and T
1. D ← ∅.
2. for each ES ∈ NES
3. ET ← ().
4. for each constituent word Ei

S in ES
5. Collect time distribution Qi

ES for Ei
S .

6. Use M to collect candidates NEi
T ∈ T with high translit. scores.

7. (optional) NEi
T ←NEi

T
S
dict(Ei

S).
8. Collect time distribution Qi

ET for each candidate in NEi
T .

9. Select candidate Ei
T ∈ NEi

T with the best ω = score(Qi
ES ,Qi

ET ).
10. ET ←ET + Ei

T .
11. if Occurs(ET )
12. D ←D

S
{(ES , ET )}.

13. return D.

Figure 1.4 Testing phase.

1. We split both words into all possible substrings of up to size two:

ES → { , p, o, w, e, l, l, po, ow, we, el, ll}
ET → { ,p, a, u, �, l, l, pa, au, u�, �l, ll}

2. We then build a feature vector by coupling substrings from the two sets:

((p, ), (p, a), ...(w, u�), ...(el, �l), ...(ll,ll))

We use the observation that transliteration tends to preserve phonetic sequence
to limit the number of couplings. For example, we can disallow the coupling of
substrings whose starting positions are too far apart: thus, we might not consider
a pairing (po, u�) in the above example. In our experiments, we paired substrings if
their positions in their respective words differed by -1, 0, or 1.

We use the perceptron (Rosenblatt (1958)) algorithm to train the model. The
model activation provides the score we use to select best transliterations on line 6.
Our version of perceptron takes variable number of features in its examples; each
example is a subset of all features seen so far that are active in the input. As the
iterative algorithm observes more data, it discovers and makes use of more features.
This model is called the infinite attribute model (Blum (1992)) and it follows the
perceptron version of SNoW (Carlson et al. (1999)).

Positive examples used for iterative training are pairs of NEs and their best
temporally aligned transliteration candidates. Alignment score thresholding is used
to implement the tradeoff between the quality and the number of the positive
examples selected for the next round. Negative examples are English non-NEs
paired with random Russian words.

1.4 Experimental Study
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We ran experiments using a bilingual comparable English-Russian news corpus2

we built by crawling a Russian news web site (www.lenta.ru). The site provides
loose translations of (and pointers to) the original English texts. We collected pairs
of articles spanning from 1/1/2001 through 10/05/2005. Each side of the corpus
consists of 2,327 documents, with 0-8 documents per day; the total sizes of the
English and Russian sides are roughly 940K and 380K tokens respectively. The
English side was tagged with a publicly available NER system based on the SNoW
learning architecture (Carlson et al. (1999)), that is available on the same site. This
set of English NEs was hand-pruned to remove incorrectly classified words to obtain
978 single word NEs.

Temporal distributions were collected with bin size of one day, as described in
1.3.1. In order to reduce running time, some limited pre-processing was done on
the Russian side. In particular, all equivalence classes, whose temporal distributions
were close to uniform (i.e. words with a similar likelihood of occurrence throughout
the corpus) were deemed common and not considered as NE candidates. Unique
words were thus grouped into 14,781 equivalence classes.

Unless mentioned otherwise, the transliteration model was initialized with a set
of 20 pairs of English NEs and their Russian transliterations. Negative examples
here and during the rest of the training were pairs of non-NE English and Russian
words selected uniformly randomly from the respective corpora.

As the transliteration model improves throughout training, new examples and
thus new features are discovered. All but top 3000 features from positive and 3000
from negative examples were pruned based on the number of their occurrences
so far. Features remaining at the end of training were used for NE discovery.
Insertions/omissions features (Section 1.3.2) were not used in the experiments as
they provided no tangible benefit for the languages of our corpus.

In each iteration, we used the current transliteration model to find a list of the
30 best transliteration equivalence classes for each NE. We then computed the
time sequence similarity score between a NE and each class from its list to find
the one with the best matching time sequence. If its similarity score surpassed a
set threshold, it was added to the list of positive examples for the next round of
training. Positive examples were constructed by pairing an NE with the common
stem of its transliteration equivalence class. We used the same number of positive
and negative examples.

We used the Mueller English-Russian dictionary to obtain translations in our
multi-word NE experiments. Lists of transliteration candidates were augmented
with up to 10 dictionary translation.

For evaluation, random 727 of the total of 978 NEs were matched to correct
transliterations by a language expert (partly due to the fact that some of the
English NEs were not mentioned in the Russian side of the corpus). Accuracy was
computed as the percentage of NEs correctly identified by the algorithm. Note that

2. The corpus, code and demo are available at http://L2R.cs.uiuc.edu/∼cogcomp/.
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Figure 1.5 Proportion of correct NEs in top N discovered candidates vs. training
iteration (averaged over 5 runs initialized with different random sets of 20 examples). The
complete algorithm outperforms both the transliteration model and temporal sequence
matching when used on their own.

although multiple correct Russian transliterations are possible for a given English
NE, the evaluation set included only a single one (due to the prohibitive amount of
labor required of the language expert otherwise). Thus, evaluation results tend to
be conservative.

In the multi-word NE experiment, 177 random multi-word (2 or more) NEs and
their transliterations/translations discovered by the algorithm were verified by a
language expert. Again, phrases which were incorrectly tagged as NEs by the source
language NE tagger were discarded.

1.4.1 NE discovery

1.4.1.1 Single-word NEs

Figure 1.5 shows the proportion of correctly discovered NE transliteration equiv-
alence classes throughout the training stage. The figure also shows the accuracy
if transliterations are selected according to the current transliteration model (top
scoring candidate) and temporal sequence matching alone.

The complete algorithm experiments included counting if the correct transliter-
ation appeared as the top scoring candidate (Top 1 ), was present in top five (Top
5 ), top ten (Top 10 ), or top twenty (Top 20 ) candidates chosen by the algorithm.

Both the transliteration model and the temporal alignment alone achieve the
accuracy of about 41%. The combined algorithm achieves about 63%, showing a
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Feature Num. in neg. Num. in pos. Percent in pos.

(a, a) 1432 6820 82.65

(n, n) 1182 5517 82.36

(r, r) 1011 5278 83.92

(gh, g) 5 137 96.48

(hm, m) 0 100 100

(tz, c) 0 78 100

(j, h) 3 71 95.95

(j, d�) 0 198 100

(ic, iq) 11 403 97.34

(an, an) 22 1365 98.41

Figure 1.6 A sample of the features discovered by the algorithm during training.

significant improvement over either of the two methods alone. Moreover, the correct
NEs appear among the top 5 candidates 72% of the time, among top 10 - 77%, and
among top 20 - 80%.

1.4.1.2 Discovered Features

Figure 1.6 lists a few interesting features discovered by the algorithm during
training. As expected, single letter pairs which have similar pronunciation in both
languages are highly indicative of a transliteration. English two-letter sequences gh
and hm correspond to a single letter sequences in Russian, since h is often silent.
Letter j is pronounced differently in names of Hispanic origin and is thus mapped
to two distinct letter sequences in Russian. Some features are particularly useful for
the specific training corpus. For example, the news corpus often refers to Serbian
surnames ending in ic.

1.4.1.3 Intuition

In order to understand what happens to the transliteration model as the training
proceeds, let us consider the following example. Figure 1.7 shows parts of candidate
transliteration lists3 for NE forsyth for two iterations of the algorithm. The weak
transliteration model selects the correct transliteration (italicized) as the 24th best
transliteration in the first iteration. Time sequence scoring function chooses it to
be one of the training examples for the next round of training of the model. By the
eighth iteration, the model has improved to select it as the best transliteration.

Not all correct transliterations make it to the top of the candidates list (translit-
eration model by itself is never as accurate as the complete algorithm on Figure

3. Each candidate is represented by an equivalence class: a common prefix and a set of
endings found in text.
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Iteration 0 Iteration 7
1 skore {-e, -ĭ, -ĭxego, -ĭxiĭ} 1 forsaĭt {-a, -, -u}
2 oform {-leno, -il, . . . } 2 oform {-leno, -il, -it�, . . . }
3 kokr�ĭn {-a, -} 3 prory {-vom, -va, -li, . . . }
4 flore {-ns, -nc, -, -ncii} 4 fross

� 5 fosset {-t, -ta, -tu, -a, -u}
� �

24 forsaĭt {-a, -, -u} �

� �

Figure 1.7 Lists of Russian transliteration candidates for forsyth for two iterations of
the algorithm. As the transliteration model improves, the correct transliteration moves up
the list.

1.5). That is not required, however, as the model only needs to be good enough to
place the correct transliteration anywhere in the candidate list.

Not surprisingly, some of the top transliteration candidates start sounding like the
NE itself, as training progresses. On Figure 1.7, candidates for forsyth on iteration
7 include fross and fossett.

1.4.1.4 Multi-word NEs

Once the transliteration model was trained, we ran the algorithm to discover multi-
word NEs, augmenting candidate sets of dictionary words with their translations
as described in Section 1.3. Of all multi-word Named Entity pairs discovered by
the algorithm, about 68% were matched correctly. The discovered Russian NEs
included entirely transliterated, partially translated, and entirely translated NEs.
Some of them are shown on Figure 1.8.

English NE Russian NE equivalence class

carla del ponte karla{-, -�l} del~ ponte
marc dutroux mark d�tru
pangbourne pangburn
supreme council verho{-vny�, ...} sovet{...}
congolese kongo{-, -lezsko�}
north carolina sever{...} karol{-ina, ...}
junichiro koizumi dz�nitiro koidzumi
rehman reman{-, -a}

Figure 1.8 Example of correct transliterations discovered by the algorithm.
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Figure 1.9 Proportion of correctly discovered NE pairs vs. the initial example set size
(averaged over 3 runs each). Decreasing the number of examples does not have an impact
on the performance of the later iterations.

1.4.2 Initial example set size

We ran a series of experiments to see how the size of the initial training set affects the
accuracy of the model as training progresses (Figure 1.9). Although the performance
of the early iterations is significantly affected by the size of the initial training
example set, the algorithm quickly improves its performance. As we decrease the
size from 80 to 20 and then to 5, the accuracy of the first iteration drops by over 15%
and 10% respectively. However, in about 50 iterations all three perform similarly.

The few examples in the initial training set produce features corresponding to
substring pairs characteristic for English-Russian transliterations. Model trained on
these (few) examples chooses other transliterations containing the same substring
pairs. In turn, the chosen positive examples contain other characteristic substring
pairs, which will be used by the model (via the infinite attribute domain, Blum
(1992)) to select more positive examples on the next round, and so on. The smaller
the initial training set, the longer it takes to discover the characteristic features,
and the longer it takes for the algorithm to converge.

One would also expect the size of the training set necessary for the algorithm
to improve to depend on the level of temporal alignment of the two sides of the
corpus. Indeed, the weaker the temporal supervision the more we need to endow
the model so that it can select cleaner candidates in the early iterations.
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k=1 k=3 k=5

Cosine 41.3 5.8 1.7

Pearson 41.1 5.8 1.7

DFT 41.0 12.4 4.8

Figure 1.10 Proportion of correctly discovered NEs vs. corpus misalignment (k) for each
of the three measures. DFT based measure provides significant advantages over commonly
used metrics for weakly aligned corpora.

w=1 w=2 w=3

Cosine 5.8 13.5 18.4

Pearson 5.8 13.5 18.2

DFT 12.4 20.6 27.9

Figure 1.11 Proportion of correctly discovered NEs vs. sliding window size (w) for each
of the three measures.

1.4.3 Comparison of time sequence scoring functions

We compared the DFT-based time sequence similarity scoring function we use in
this paper to the commonly used cosine (Salton and McGill (1986)) and Pearson’s
correlation measures in order to assess its performance and robustness to misalign-
ment between two sides of the corpus.

We perturbed the Russian side of the corpus in the following way. Articles from
each day were randomly moved (with uniform probability) within a k-day window.
We ran single word NE temporal sequence matching alone on the perturbed corpora
using each of the three measures (Figure 1.10).

Some accuracy drop due to misalignment could be accommodated for by using
a larger temporal bin for collecting occurrence counts. We tried various (sliding)
window sizes w for a perturbed corpus with k = 3 (Figure 1.11).

DFT metric outperforms the other measures significantly in most cases. NEs tend
to have distributions with few pronounced peaks. If two such distributions are not
well aligned, we expect both Pearson and cosine measures to produce low scores,
whereas the DFT metric should catch their similarities in the frequency domain.

1.5 Conclusions

We have proposed a novel algorithm for cross lingual multi-word NE discovery in
a bilingual weakly temporally aligned corpus. We have demonstrated that using
two independent sources of information (transliteration and temporal similarity)
together to guide NE extraction gives better performance than using either of them
alone (Figure 1.5).

The algorithm requires almost no supervision or linguistic knowledge. Indeed,
we used a very small bootstrapping training set and made a simple assumption in
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order to group morphological variants of the same word into equivalence classes in
Russian.

We also developed a linear discriminative transliteration model, and presented a
method to automatically generate features. For time sequence matching, we used
a scoring metric novel in this domain and provided experimental evidence that it
outperforms two other metrics traditionally used.

1.6 Future Work

The algorithm can be naturally extended to comparable corpora of more than two
languages. Pair-wise time sequence scoring and transliteration models should give
better confidence in NE matches.

The ultimate goal of this work is to automatically tag NEs so that they can be
used for training of an NER system for a new language. To this end, we would like
to compare the performance of an NER system trained on a corpus tagged using
this approach to one trained on a hand-tagged corpus.
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