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Abstract. Many applications in information retrieval, natural language
processing, data mining, and related fields require a ranking of instances
with respect to a specified criteria as opposed to a classification. Fur-
thermore, for many such problems, multiple established ranking models
have been well studied and it is desirable to combine their results into
a joint ranking, a formalism denoted as rank aggregation. This work
presents a novel unsupervised learning algorithm for rank aggregation
(ULARA) which returns a linear combination of the individual ranking
functions based on the principle of rewarding ordering agreement be-
tween the rankers. In addition to presenting ULARA, we demonstrate
its effectiveness on a data fusion task across ad hoc retrieval systems.

1 Introduction

Ranking items is a fundamental computer and information sciences problem.
Most closely associated with information retrieval [1], ranking has recently at-
tracted significant attention from the machine learning [2–5] and natural lan-
guage processing [6–8] communities. While classification is the standard task
of inductive learning, many applications require the expressivity of ranking. A
related, but less thoroughly studied problem is rank aggregation, where multiple
existing rankings of an item set are combined into a joint ranking. In the informa-
tion retrieval community, this is the data fusion problem [9, 10] and corresponds
to deriving a document ranking based on the input of multiple retrieval systems.
For domains where ranking algorithms exist which utilize different modalities or
views over the data, rank aggregation is particularly appealing as these views
are difficult to combine into a single model.

From a machine learning perspective, this work is most ostensibly related
to [2] which extends ideas regarding expert ensembles [11] and boosting [12] to
ranking. In addition to a different model representation, the fundamental dif-
ference is that our algorithm is an unsupervised learning algorithm. Another
related vein is the study of deriving voting policies which satisfy specified ax-
iomatic properties [13] (e.g. the independence of irrelevant alternatives [14]). Our
algorithm is similar in that the input is a set of ranking functions and no super-
vised training is required. However, our work adaptively learns a parameterized
linear combination to optimize the relative influence of individual rankers.



In the data fusion domain, one widely cited set of approaches is [15]. These
solutions are deterministic functions which mix rankings heuristically, differing
from our work in that we learn the mixing parameters. One data fusion approach
which has learned parameters measuring the reliability of ranking functions is
ProbFuse [9], where probabilities that specific rankers return relevant documents
are combined to determine the rank ordering. A second supervised approach pre-
sented by [10] also resembles our approach in that they use a linear combination
of ranking functions to determine the joint ranking. However, unlike both meth-
ods, we present an unsupervised learning algorithm.

This paper presents an unsupervised learning algorithm for rank aggregation
(ULARA) based on a linear combination of ranking functions, guided by the
simple but effective principle that the relative contribution of an individual or-
dering to the joint ranking should be determined by its tendency to agree with
other members of the expert pool. To the best of our knowledge, ULARA pre-
scribes the first method for learning a parameterized rank aggregation without
supervision. The remainder of the paper proceeds as follows. In addition to de-
riving ULARA in section 2, we also demonstrate specific properties on synthetic
data. Section 3 proceeds by presenting experimental results for a data fusion
task. Finally, we conclude and describe future work in section 4.

2 Rank Aggregation Framework

Let x ∈ X denote an item (e.g. document) in the instance space and x represent
a set of items (e.g. corpus) to be ranked relative to each other. Furthermore, let
q ∈ Q represent a query and r : Q× X → N represent a ranking function (e.g.
retrieval system) where the output represents the item position in the ranked
list such that r(q, x) < r(q, x′) specifies that x is ranked higher than x′ with
respect to q. We use the notation ru �E rv to signify that ru is a better ranking
function than rv with respect to the application specific evaluation criteria E .
Examples of E include Spearman’s rank correlation coefficient [16] for general
ranking problems or F1 measure for information retrieval.

Given a set of ranking functions {ri}Ni=1, we desire an aggregate ranking
function R : Q× X → N such that R �E ri for i = 1, . . . , N . This work studies
aggregation based on the functional form R′(q, x) =

∑N
i=1 wi · ri(q, x), where

wi are the linear combination parameters, noting that R′ is the expected value
of the rank if w is a probability distribution (i.e. 0 ≤ wi ≤ 1 for all i and∑N

i=1 wi = 1). This representation has been shown successful in supervised sit-
uations [10], which we look to extend to the unsupervised case. Our specific
approach derives a surrogate supervision signal in the absence of labeled data,
referred to as an incidental supervision signal. Given this seting, the technical
goals are three-fold: (1) derive an incidental supervision signal, (2) develop a cor-
responding unsupervised learning algorithm to learn the parameters of R′, and
(3) demonstrate that this incidental supervision signal works well for multiple
evaluation criteria E .



2.1 Incidental Supervision based on Ranker Agreement

The fundamental intuition for our incidental supervision signal is that in non-
adversarial situations, accurate ranking functions will rank items according to a
similar conditional distribution while poor ranking functions will tend towards a
more uniformly random ranking distribution. For our representation, rankers
that tend to agree with the plurality of rankers will be given large relative
weight, while rankers that tend to disagree will be given small relative weight. Let
µ(q, x) =

PNx
i=1 ri(q,x)

Nx
signify the mean ranking where Nx =

∑N
i=1Jri(q, x) ≤ κiK1

(i.e. the number of ranking functions which return a ranking higher than a
threshold κi for x). For each item to be ranked, each ranker will return a value
ri(q, x) which is used to measure agreement using the variance-like measure
σi(q, x) = [ri(q, x)− µ(q, x)]2. If this value is small for a given item ranking, the
corresponding ranker agrees with other rankers for this item and should be given
a large weight and vice versa. Therefore, if we use a scaled variance-like measure
δi(q, x) = wi ·σi(q, x) and sum this value across all {query, item, ranker} triples,
this statement leads to an optimization problem that minimizes the weighted
variance of the aggregate ranking function over the component rankings,

argmin
w

∑
q∈Q

∑
x∈x

∑N
i=1 δi(q, x) (1)

s.t.
∑N

i=1 wi = 1;∀i, wi ≥ 0. (2)

2.2 Unsupervised Learning Algorithm for Rank Aggregation

As opposed to optimizing this problem of section 2.1 directly, ULARA uses
iterative gradient descent [17] to derive an effective online learning algorithm.
Observing that δ(q, x) is linear in w, the gradient for equation 1 with respect to
a single weight wi is ∇ =

∑
q∈Q

∑
x∈x σi(q, x). To derive an update rule, we are

interested in the gradient of the utility function components, δi(q, x), stated as

∇i =
∂δi(q, x)

∂wi
= [ri(q, x)− µ(q, x)]2 (3)

and resulting in algorithm 1. ULARA takes as input a set of ranking functions
{ri}Ni=1 along with the associated ranking function threshold values κi, a learning
rate λ, and a significance threshold value θ, all discussed in greater detail below.
Also, ULARA takes a set of queries Q of which we do not know the true ranking.
In general, for each item x and query q, the expert ranking for each of the
N rankers are determined using ri(q, x), the mean is calculated (line 8), the
gradient is determined (line 11), and the weight update is made (line 14/15).
Once all of these updates are completed, the weight vector is normalized (line
17) to generate a probability vector for evaluation in algorithm 2. The remaining
discussion entails algorithmic details to accommodate practical situations:

1 JpK = 1 if the predicate p is true; else JpK = 0.



Algorithm 1 ULARA - Training
1: Input: Q, {ri, κi}Ni=1, λ, θ
2: w← 0 {additive}
3: w← 1

N
{exponentiated}

4: t← 1
5: for all q ∈ Q do
6: for all x ∈ x do
7: if Nx ≥ θ then

8: µ(qq, x) =
PNx

i=1 ri(q,x)

Nx

9: for i← 1, . . . , N do
10: if ri(x) ≤ κi then
11: ∇i ← [ri(q, x)− µ(q, x)]2

12: else
13: ∇i ← [κi + 1− µ(q, x)]2

14: wt
i ← wt−1

i + λ · ∇i {additive}
15: wt

i ←
wt−1

i e−λ∇iPN
j=1 wt−1

j e−λ∇i
{exp.}

16: t← t + 1
17: Normalize(w) {additive}
18: Output: w ∈ [0, 1]N

Algorithm 2 ULARA - Evaluation
1: Input: q,w, {ri, κi}Ni=1

2: for all x ∈ x do
3: Rx ← 0
4: for i← 1, . . . , N do
5: if ri(q, x) ≤ κi then
6: Rx ← Rx + wi · ri(q, x)
7: else
8: Rx ← Rx + wi · (κi + 1)
9: ArgsortAscending(Rx)

10: R(q, x)← Ranking(Rx)
11: Output: R : Q×X → N

Fig. 1: An Unsupervised Learning Algorithm for Rank Aggregation (ULARA). Note
that lines 2, 14, and 17 are only used in the case of additive updates and lines 3 and
15 are only used in the case of exponentiated updates.

– Additive vs. Exponentiated Updates - Two methods for gradient descent are
additive and exponentiated updates [17], each with specific properties that
will be explored. If using additive updates, lines 3 and 15 should be removed.
If using exponentiated updates, lines 2, 14, and 17 should be removed noting
that normalization is not necessary.

– Missing Rankings (κi) - For most settings, there are more items in the in-
stance space than the individual ranking functions will return. For data fu-
sion, systems return rankings for a fixed set of documents and most corpus
documents remain unranked. We denote this threshold value as κi, noting
that ranking functions may have different thresholds. If a ranking is not re-
turned by a specific ranker, we substitute κi +1 for update calculations (line
13), assuming unranked items are ranked just below the last ranked item.

– Learning Rate (λ) - For ULARAadd, λ = 1 was used for all experiments. For
ULARAexp, λ was set proportional to κ−2.

– Variable Number of Rankers (θ) - For some items, only a small fraction of
the ranking functions return a valid rank. If less than θ rankers, as defined
by the user, return a valid rank for an item, the information is deemed
untrustworthy and no updates are made for this item (line 7).



Studying ULARA via Controlled Experiments We first explore ULARA
on synthetic data to: (1) examine robustness (2) compare additive and exponen-
tiated updates. We begin by generating M = 1000 items with rank designated
as r?(x) = {1, 2, . . . , 1000}. We then specify N = 14 ranking functions ri(x)
with varying degrees of perturbation from the true ranking by perturbing r?(x)
by a random sample from the discrete uniform distribution with window size
ω. Formally, ri(x) ∼ U

[
max

(
0, r?(x)− ω

2 − ε
)
,min

(
r?(x) + ω

2 + ε,M
)]

where
ε ≥ 0 is the amount necessary to maintain window size ω. Ties are broken with
the policy that all tied items receive an the average rank of the item positions as
per [16]. |Q| = 50 queries were generated for N = 14 ranking function with two
ri(x) where ω = 200, two ri(x) where ω = 600, and 10 ri(x) where ω = 1000.

Figure 2 displays performance of both ULARAadd and ULARAexp on the
synthetic data. As a baseline, we modify the CombMNZ [15] to use rank infor-
mation as opposed to the underlying real-valued score since we do not have this
information in our task; CombMNZrank ←

∑N
i=1 ri(q, x) ·Nx. We use a modi-

fied CombMNZ as it is unsupervised (albeit without learning) and widely used
for data fusion. For evaluation, we use Spearman’s rank correlation coefficient,
ρ ∈ [−1, 1] [16]. ULARAexp achieves an increase of 0.28 (39% relative increase)
in ρ relative to CombMNZrank after 40 queries and ULARAadd achieves an
increase of 0.24 (35% relative increase) in ρ after only 5 queries, demonstrating
that ULARA can effectively weigh rankers without explicit supervision.

The second result is presented in figure 3, showing the average weights as-
sociated with the rankers in the three groups (ω = 200, 600, and 1000) during
training. ULARA assigns the most weight to the best ranking functions, some
weight to the reasonable ranking functions, and almost no weight to the worst
ranking functions. In accordance with theory [17], ULARAexp tends to select the
best ranking functions by assigning all of the weight to these rankers. Conversely,
ULARAadd tends to mix the ranking functions relative to their performance,
which proves beneficial in cases where many reasonable rankers exist and can
complement each other in different areas of the item distribution.

3 Data Fusion

The real-world task we study empirically is data fusion [9], utilizing data from
the ad hoc retrieval shared task of the TREC-3 conference. For this task, each
group of N = 40 shared task participants was provided with a set of documents
and |Q| = 50 of queries, returning the κ = 1000 documents for which the ex-
pected relevance is greatest for each query. ULARA was used to combine the
rankings of the individual research groups into an aggregate ranking function R.
Performance is quantified by the precision/recall curves and mean average preci-
sion metric as provided by the software (trec eval) from the TREC conference
series [18].

Figure 4 shows the results of the top individual submissions, CombMNZrank,
and ULARA for the data fusion task. We observe that ULARA outperforms
all component ranking functions as well as CombMNZrank. More significantly,
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Fig. 2: Experimental results on syn-
thetic data comparing ULARA to
CombMNZrank. Exponentiated updates
achieve a 39% relative increase compared
to CombMNZrank in the Spearman’s
ranking coefficient with only 40 queries,
while additive updates achieve a 35% rel-
ative increase in only 5 queries.
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Fig. 3: ULARA ranker weights through-
out training on synthetic data, noting the
best rankers are weighted the highest,
while the poorest rankers have negligi-
ble weight. Furthermore, exponentiated
updates tends to select the best rankers
while additive updates mix rankers rela-
tive to their performance.

while CombMNZrank performs slightly better than the top system, ULARAadd

achieves a relative increase in average precision of 4.0% at the top ranking, 6.4%
at 0.1 recall, and 6.0% at 0.2 recall over CombMNZrank. ULARAexp achieves
a relative increase in average precision of 4.3% at the top ranking, 7.7% at 0.1
recall, and 8.1% at 0.2 recall over CombMNZrank. These results are significant
in that they demonstrate that ULARA can not only distinguish good ranking
functions from bad as in the synthetic data task, but in practice can generate a
joint ranking function superior to its best components on the data fusion task.

The second experiment demonstrates the robustness properties of ULARA
by looking not at the situation where we are working with world-class retrieval
systems, but at the hypothetical situation where many of the ranking systems
were poor. Specifically, we replaced a specified number of the N = 40 systems
with a rankings drawn uniformly from all documents returned by all systems for
a given query, denoted as random rankings. As figure 5 shows, the mean average
precision of ULARA versus CombMNZrank is consistently superior, becoming
more pronounced as the number of random rankings is increased. To further
explore this effect, we varied θ and observe that as more noise is added, θ must
be lowered to accommodate the lack of agreement between rankers. However,
even under relatively extreme cicumstances, ULARA returns a joint ranking
function competitive with a noise free system. This experiment demonstrates
that ULARA is capable of discounting bad rankers in a real-world setting such
that they are not detrimental to the aggregate ranking function R.
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Fig. 4: Experimental results for data
fusion of the retrieval systems submit-
ted to the TREC-3 shared task. While
CombMNZrank only negligibly outper-
forms the top system, ULARA performs
significantly better than any component
system at multiple recall levels.
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Fig. 5: Experimental results where a
number of TREC-3 systems are replaced
with random rankings, demonstrating
robustness of ULARA. While the per-
formance of the CombMNZrank algo-
rithm deteriorates rapidly, ULARA per-
forms well even when more than half of
the systems are replaced.

4 Conclusions and Future Work

We have presented a novel approach to the rank aggregation problem by specify-
ing an optimization problem to learn a linear combination of ranking functions
which maximizes agreement. Secondly, we introduce an unsupervised learning
algorithm, ULARA, to solve this problem. This criteria is driven by the assump-
tion that correctly ranked instances will possess a similar position in multiple
ranking functions, allowing us to assign a high weight to rankers that tend to
agree with the expert pool and reduce the influence of those rankers which tend to
disagree. We have successfully demonstrated the effectiveness of our algorithm in
two diverse experimental settings which each use a different evaluation function:
on synthetic data which quantifies performance with Spearman’s rank correla-
tion coefficient and an information retrieval data fusion task which quantifies
performance using precision/recall. For future work, we have already generated
preliminary results extending ULARA to generalize a reranking approach [6] to
named entity discovery [8], which we expect to pursue further.
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