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ABSTRACT
Distributed representations of words have proven extremely useful in numerous natural lan-
guage processing tasks. Their appeal is that they can help alleviate data sparsity problems
common to supervised learning. Methods for inducing these representations require only
unlabeled language data, which are plentiful for many natural languages. In this work, we
induce distributed representations for a pair of languages jointly. We treat it as a multitask
learning problem where each task corresponds to a single word, and task relatedness is derived
from co-occurrence statistics in bilingual parallel data. These representations can be used for a
number of crosslingual learning tasks, where a learner can be trained on annotations present
in one language and applied to test data in another. We show that our representations are
informative by using them for crosslingual document classification, where classifiers trained
on these representations substantially outperform strong baselines (e.g. machine translation)
when applied to a new language.
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1 Introduction

Word representations induced to capture syntactic and semantic properties of words have been
extremely useful for numerous natural language processing applications (Collobert and Weston,
2007; Turian et al., 2010). Their primary appeal is that they can be induced using abundant
unsupervised data and then used directly or as additional features to alleviate the data sparsity
problem common in the supervised learning scenario.

Most of the prior work on inducing these representations has focused on a single language,
English, which enjoys the largest repository of available annotated resources. In this work, we
focus on a single representation for a pair of languages such that semantically similar words are
closer to one another in the induced representation irrespective of the language. Learning with
these representations for a task where annotation is available for one language would induce a
classifier which could be used in another language lacking sufficient resources for this task. We
pick one example of such a task, document classification, to show that a classifier trained using
these representations in one language achieves high accuracy in another language where no
annotation is available (the set-up called direct transfer of annotation).

Our main contribution is a general technique for inducing crosslingual distributed representa-
tions. We use an existing model for learning distributed representations in individual languages;
however, motivated by the multitask learning (MTL) setting of Cavallanti et al. (2010), we
propose a method to jointly induce and align these representations. We use word co-occurrence
statistics from parallel data to define a signal for aligning the latent representations in both
languages as we induce them. In MTL terminology, we treat words as individual tasks; words
that are likely to be translations of one another (based on bitext statistics) are treated as related
tasks and effectively help to align representations in both languages during learning.

We use a variant of a neural network language model of Bengio et al. (2003) to induce the latent
representations in individual languages. These models learn a lower-dimensional embedding of
words arguably capturing their syntactic and semantic properties (Socher et al., 2011a).

In sum, the contributions of this work are:

• we frame induction of crosslingual distributed word representations as joint induction
and alignment of distributed representations in individual languages;

• we apply our framework to the neural network language modeling approach of Bengio
et al. (2003);

• although our goal is not to beat the state of the art in crosslingual document classification,
we use this task to show that the crosslingual embeddings we induce enable us to transfer
a classifier trained on one language to another without any adaptation.

The crosslingual representation induction set-up we propose is motivated by the multitask
learning (MTL) setting of Cavallanti et al. (2010), so we begin with a brief overview in Section 2,
in part to introduce terminology and notation. In our set-up, we do not commit to a particular
technique for learning representations in individual languages, but rather propose a general
technique for jointly inducing and aligning representations in multiple languages. However,
since we apply the setup to a neural probabilistic language model in this work, we also give a
short overview of a variant of the method from Bengio et al. (2003) in Section 3. In Section 4,



we define the crosslingual distributed representation induction as the joint task of learning
distributed representations in two languages. Finally, Section 5 gives experimental evaluation
of the induced crosslingual representations on the crosslingual document classification task.

2 Multitask Learning

The goal of multitask learning (MTL) is to improve generalization performance across a set of
related tasks by learning them jointly. MTL is particularly relevant when sufficient annotation is
not available for (some of) these tasks.

In the multitask set-up of Cavallanti et al. (2010), at time t a multitask learner receives an
example relevant to one of K tasks it is learning. Along with the example x t ∈ Rm, and the
correct binary label yt ∈ {−1,+1}, the learner is supplied with the task index it ∈ [1, K]. It
then considers a compound multitask instance φx t

∈ RmK :

φx t
= (0, . . . , 0
︸ ︷︷ ︸

(it−1)m

, x>t , 0, . . . , 0
︸ ︷︷ ︸

(K−it )m

)>

A multitask version of the perceptron algorithm they propose keeps a weight vector for each
task. Assuming that at time t the algorithm has made s mistakes, the compound weight vector
at t is vs = (v>1,s, . . . , v>K ,s)

>, where v j,s ∈ Rm is the weight vector for task j. When a mistake is
made at time t, updates are performed not only for the weight vector of task it , but also for the
remaining K − 1 tasks. The rate of the update for each task is defined by a K × K interaction
matrix A, which, intuitively, encodes relatedness between the tasks. When a learner makes a
mistake, the compound weight vector update rule applied is vs ← vs−1 + (A⊗ Im)−1φx t

, where
⊗ is the Kronecker product and Im is the identity matrix of size m. This update can be rewritten
as separate updates for each task:

v j,s ← v j,s−1 + ytA
−1
j,it

x t ∀ j ∈ [1, K]

This learning algorithm directly corresponds to the minimization of the following objective:

L(v) =
∑

t

L(t)(v) +
1

2
v>(A⊗ Im)v (1)

where L(t)(v) =
�

1− yt v
>φx t

�

+
is the hinge loss on the example at time t. Consequently, this

setup can be naturally extended to other loss function and to non-linear models. We will use it
to formalize the crosslingual representation induction task in Section 4.

2.1 Encoding Prior Knowledge in Interaction Matrix A

Let us consider the following simple interaction matrix with the corresponding inverse:
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That is, when a mistake is made at time t, the rate of update is 2/(K + 1) for task it and half as
large for the other K − 1 tasks. In other words, A defines all tasks as “equally related” to any
other task.

Cavallanti et al. (2010) propose an elegant way of encoding richer prior knowledge in the
interaction matrix. Relatedness between tasks can be naturally represented by an undirected
graph G = (R, E). The vertices R of the graph are tasks, and a pair of vertices are connected by
an edge in E only if we believe that the corresponding tasks are related. The interaction matrix
can then be defined as:

A= I + L (2)

where I is the identity matrix and L is the Laplacian of graph G, defined as a K × K matrix:

Li, j(G) =







deg(i) if i = j
−1 if (i, j) ∈ E
0 otherwise

where deg(i) is the number of edges involving the vertex i.

This definition of the task interaction matrix A naturally generalizes to weighted graphs H =
(R, E, S), where S are weights associated with edges E. The graph Laplacian becomes:

Li, j(H) =







∑

(i,k)∈E s(i, k) if i = j
−s(i, j) if (i, j) ∈ E
0 otherwise

where s(i, j) is the weight of (i, j) ∈ E. We will use these extended definitions in this work to
include prior knowledge about the degree of relatedness between tasks. Note that the matrix A
is invertible: a graph Laplacian is always positive semi-definite and consequently adding an
identity matrix is guaranteed to yield a positive-definite matrix.

3 Neural Language Models

The goal of statistical language modeling methods is to estimate the joint probability distribution
of word sequences occurring in a natural language. Neural probabilistic models learn a latent
multi-dimensional representation of words and use them to estimate the probability distribution
of word sequences. An important side-effect of training neural language models is the fact that
the learned latent representations capture syntactic and semantic properties of context words,
because these properties are predictive of a possible next word.

Lets us assume that a word sequence is a string of words w1, . . . , wT , and wi ∈ V, i ∈ (1, . . . , T )
for some vocabulary V . For notational convenience, we will assume that the |V | types are
indexed, and wi could refer to either the i-th token in the sequence or the corresponding index,
depending on the context in which it is used.

When building a statistical n-gram language model, the aim is to estimate a conditional dis-
tribution of the next word given the preceding n − 1 words, i.e. P(wt |wt−n+1:t−1), where
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Figure 1: Neural architecture (3-gram language model) for inducing word representations in a
single language.

wt−n+1:t = (wt−n+1, . . . , wt−1, wt) is a subsequence of n words. The language model of Ben-
gio et al. (2003) estimates the distribution over the next word wt ∈ Vout in the sequence
(see Figure 1) as follows1:

1. Uses a shared representation vector c ∈ R|Vin|d , a concatenation of representations of
all vocabulary words c = (c>1 ; . . . ; c>|Vin|

)>, to map each of the context words wi , i ∈
[t − 1, . . . , t − n+ 1] to its distributed representation cwi

.

2. Concatenates all of the word representations of context wt−n+1:t−1 preserving the order,
(c>wt−n+1

; . . . c>wt−2
; c>wt−1

).

3. The hidden layer applies a linear transformation followed by the logistic function on the
concatenated embeddings.

4. Finally, the output layer separates out the classes (words in Vout) and applies the softmax
function to ensure that the network outputs can be interpreted as a probability distribution.
We will call W all network weights other than the embedding c.

The key component of the architecture is the shared embedding c, which is learned along with
the rest of the network parameters using backpropagation. The model captures local context, so
that the induced d-dimensional distributed vectors for words in the vocabulary Vout are “closer”
for more semantically “similar” words. Thus, the induced representation can help alleviate
sparsity issues in a supervised learning setup (Turian et al., 2010).

1Note that we make a distinction between the input (Vin) and output (Vout ) vocabularies. It will be relevant in the
experimental section to speed up learning, but in the rest of the paper they can be assumed the same,Vin = Vout = V .



Learning maximizes the data likelihood objective with respect to model parameters θ = (W, c):

L(θ) =
T
∑

t=1

log P̂θ (wt |wt−n+1:t−1) (3)

The training procedure uses stochastic gradient descent: it iteratively updates parameters using
a gradient at each training subsequence wt−n+1:t . Specifically, for the word representations c,
the updates have the form:

cw ← cw +η
∂ L(t)(θ)
∂ cw

, (4)

where η is the learning rate and L(t)(θ) = log P̂θ (wt |wt−n+1:t−1) is the contribution of the
example to the data likelihood objective. Note that only the representations of words in the
contextual window (i.e. their corresponding parts of c) are modified during each step.

4 Crosslingual Representation Induction

The neural language model we described in Section 3 induces an embedding c, so that words
which are semantically similar are close to one another in c. In this work, our goal is to have
the same property hold across two languages.2 We train neural language models jointly for
both languages and induce a common embedding.

We cast crosslingual distributed representation induction as a multitask learning problem by
treating each word w in our languages’ vocabularies as a separate task. The set of related
tasks for each w are then the possible translations of the word in the other language. When
encoding relatedness and defining an interaction matrix A, we make use of parallel data (a set
of sentences and their translations). These resources are available for many language pairs
and include large volumes of multilingual parliamentary proceedings, book translations, etc.
Standard Machine Translation tools (e.g. GIZA++ (Och and Ney, 2003)) can be used to induce
alignments between words on both sides of the bitext.

Assuming that word alignments are available, we first define a complete undirected bipartite
weighted graph H with two disjoint sets of vertices corresponding to the input vocabularies
Vin of the two languages, and edges labeled with the number of alignments between each pair
of words in the two sets. The edge weights indicate the fit of a pair of words as translations,
and thus encode the degree of relatedness between the two corresponding tasks. We can now
directly apply the definition of the interaction matrix from Section 2, defining s(w, w̃) as the
number of alignments between words w and w̃.

We use a separate neural language model for each language l, parameterized by θ (l) = (W (l), c).
Although the notation might suggest that embedding c is shared across languages, this is not the
case, as we distinguish between word types of the two languages: for example, the word handy
in English and the word Handy in German (meaning a mobile phone) would be treated as two
different word types. Given an interaction matrix A, we can extend the MTL formalization (1)

2Our methods can be trivially extended to more than two languages.



and reformulate the monolingual learning objective (3) as:

L(θ) =
2
∑

l=1

T (l)
∑

t=1

log P̂θ (l)(w
(l)
t |w

(l)
t−n+1:t−1) +

1

2
c>(A⊗ Id)c (5)

where T (l) and w(l)t are the number of words in the data set for language l and a word at
position t in this corpus, respectively. As before, ⊗ denotes the Kronecker product and Id is the
identity matrix of size d.

Intuitively, the first (language modeling) part of the learning objective (5) captures the syntactic
and semantic similarities between words in each of the two languages, while the second
(MTL regularization term) ensures that the learned representations are aligned across the two
languages. Note that additional information such as WordNet synsets could in principle be
used to also encode relatedness between words within each language into A. However, these
resources are unavailable for most languages. Also, similar type of information is already
induced by the neural language model.

The stochastic gradient descent procedure would now iteratively update parameters using a
gradient at each training subsequence w(l)t−n+1:t in both languages. The monolingual update
formula (4) now becomes:

cw ← cw +η
∑

w′
A−1

w′,w

∂ L(l,t)(θ)
∂ cw′

, (6)

where η is the learning rate and L(l,t)(θ) = log P̂θ (l)(w
(l)
t |w

(l)
t−n+1:t−1) is the contribution of the

training example. In this formulation, both representations of the words in the contextual
window ct−n+1:t−1 and words w′ “related” to them (i.e. those w′ for which A−1

w,w′ 6= 0 for any
contextual word w) are modified on each training step. These updates can be computed
efficiently as long as A−1 is sufficiently sparse.

Computing these learning updates requires the inverse of the interaction matrix A. However,
the dimensionality of the matrix is equal to the total number of word types in both languages,
so the standard cubic-time Gaussian elimination is infeasible even for moderately sized datasets.
Direct computation of A−1 can be made more efficient if we compute it separately for each of
the connected components in our graph. Still, because of large sizes of the input vocabularies
and the noise in word alignments, this computation remains impractical. A future direction
could be to explore faster algorithms which could take advantage of our particular setup (i.e.,
sparse matrices corresponding to bipartite graphs (Li, 2009)), or to use approximate iterative
algorithms (Fouss et al., 2007). In our experiments, we approximate A−1 directly with the
following heuristic:

Â−1
w,w =

mw + 1

mw + 1+
∑

w̃ s(w, w̃)

Â−1
w,w′ =

s(w, w′)

mw + 1+
∑

w̃ s(w, w̃)



where mw = maxw̃ s(w, w̃). Intuitively, the effective update rate for a word w′ “related” to a
contextual word w is proportional to their alignment count. The rate applied to a context word
itself is only slightly larger than the rate used for the word w′ most frequently aligned to it if the
corresponding alignment frequency mw = s(w, w′) is high. However, if mw were 1 and w were
not aligned to other words, the self update rate Â−1

w,w would be twice as large. Consequently,
the +1 term reduces the effect of potentially noisy counts. While this heuristic does not quite
correspond to the exact computation of the inverse of the interaction matrix A as we defined it
for weighted graphs, it plays a similar role, has a similar form (compare with the example in
section Section 2), and is easy to compute.3

5 Experiments

The technique we propose induces crosslingual representations capturing relatedness of words
in a pair of languages. We use a particular supervised learning task, crosslingual document
classification, and show that a classifier trained using these representations in one language
achieves high accuracy in another language where no annotation is available. Note that our
goal is not to induce a state-of-the-art classifier, but rather to examine the informativeness of
the induced representations.4 Thus, we keep the classification experiments simple: we chose a
learning algorithm requiring no parameter tuning and used simple features.

5.1 Data

In our experiments, we induce crosslingual embeddings and use them for multilinigual docu-
ment classification for the English-German language pair. We use the following resources:

• English (en) and German (de) sections of the Europarl v7 parallel corpus (Koehn, 2005)
to induce our baseline systems and to compute the interaction matrix A (see Section 4).
We used GIZA++ (Och and Ney, 2003) to induce word alignments, keeping only bidi-
rectional alignments. In the context of our model, parallel data is only used to estimate
the interaction matrix A. When constructing A, we discard word pairs aligned only
once in order to reduce the number of effective updates during gradient descent (see
equation (6)).

• A subset of the English and German sections of the Reuters RCV1/RCV2 corpora (Lewis
et al., 2004) to induce crosslingual embeddings and for the crosslingual document classi-
fication experiments. The corpus contains documents (news stories) in several languages
which are assigned topics capturing the major subjects of the story. In the English dataset,
there are four topics (each with hierarchy of sub-topics): CCAT (Corporate/Industrial),
ECAT (Economics), GCAT (Government/Social), and MCAT (Markets). Note that these
documents are not parallel.

Each document can be labeled with multiple topics, however, since we do not want to
consider multi-label classification in our experiments, we only select documents assigned
to single topics. Of those, we sampled 34,000 en and 42,753 de documents (they were
selected with the goal of keeping roughly 8 million tokens for each language). which we
used for unsupervised induction of crosslingual representations.

3In preliminary small scale experiments we did not observe a significant advantage from using the true inverse
matrix, and therefore we chose not to resort to more accurate approximations.

4An embedding specifically learned for the classification task would require modifications of the learning objective.
While it is likely to improve the performance on this specific task, it is not the aim of this work.



For our classification experiments, we randomly selected 15,000 documents from our
sampled dataset and used a third of them as a test set, with the remainder used to
construct training sets of sizes between 100 and 10,000 documents. We repeated this
procedure for both en and de; for both languages, the majority class was MCAT with
roughly 46.8% of the documents.

All datasets were normalized with the tools distributed by the 2012 SMT workshop (Callison-
Burch et al., 2012). The list of RCV1/RCV2 document names we used in our experiments along
with the crosslingual word representations we induced are available at http://www.ml4nlp.
de/code-and-data.

5.2 Our Model and Baselines

Our neural language model architecture (Section 3) was the same for both languages with 25
hidden units, and the context size of 4. We induced representations of d = 40 dimensions for
input vocabularies of |V en

in | = 43,614 and |V de
in | = 50,110 words (filtering out words which

occur fewer than five times in our dataset). However, to speed up training,5 we learn on a
subset of training sequences choosing the 3,000 most frequent words in en and de for their
output vocabularies V en

out and V de
out , respectively. The representations were induced from our

subset of RCV1/RCV2 dataset using word alignments from Europarl v7 (see Section 5.1). We
ran the learning procedure for 40 iterations, which took about 10 CPU days and is linearly
parallelizable. Learning rate was set to 0.005 and was reduced when the training data likelihood
went up, as is common when training neural networks.

We used the averaged version of the perceptron algorithm (Collins, 2002) to train a multiclass
document classifier, so that we do not need to tune any parameters, with the exception of the
the number of epochs, which we set to 10 in all experiments (the results were not sensitive to
this parameter). Our goal is to train a classifier in one language and test it on data in another,
so we compared the following classifiers:

• A classifier which used features based on the crosslingual representations we induced
(DistribReps) and was trained on supervised training data in one language and directly
tested on documents in the other. We represent each document as an average of d-
dimensional representations of all of its tokens weighted by their idf score (Huang et al.,
2012).

• A classifier with word count features which was trained and tested on the second language
documents translated into the original language. Translations are done by replacing each
word in a test document by the word most frequently aligned to it in the parallel data
(Glossed). Unaligned words were left as is.

• Using a machine translation system instead of simple glossing would provide a natural
baseline (Fortuna and Shawe-Taylor, 2005; Shi et al., 2010). So, another baseline (MT)
is similar to the previous with the exception that the second language documents were
translated by the standard phrase-based machine translation model (Koehn et al., 2007)
using default parameters and a 5-gram language model trained on Europarl v7 data.

• For reference, we also include majority class predictions (Majority Class).
5In particular, computing the normalization in the softmax function, is linear in |Vout |.

http://www.ml4nlp.de/code-and-data
http://www.ml4nlp.de/code-and-data


january president said
en de en de en de

january januar president präsident said sagte
february februar king präsidenten reported erklärte

november november hun minister stated sagten
april april areas staatspräsident told meldete

august august saddam hun declared berichtete
march märz minister vorsitzenden stressed sagt
june juni advisers us-präsident informed ergänzte

december dezember prince könig announced erklärten
july juli representative berichteten explained teilt

september september institutional außenminister warned berichteten

oil microsoft market
en de en de en de
oil baumwolle microsoft microsoft market markt
car kaffee intel intel papers marktes

energy telekommunikation instrument chemikalien side fonds
air tabak chapman endesa economy sektor

tobacco rindfleisch endesa kabel duration laufzeit
steel öl distillates hewlett-packard sector montreal

housing benzin pty guinness tobacco verkäufer
cotton stahl hewlett-packard dienste montreal papiere

insurance strom guinness thomson house fracht
technology milch potash exxon pay hersteller

Table 1: Example English words along with 10 closest words both in English (en) and German
(de), using the Euclidean distance in the induced joint distributed representation.

5.3 Classification Results

Before looking at the classification results, let us examine the distributed representations we
induce with a small experiment. Table 1 shows six English words, each along with ten words in
English and German ranked by the Euclidean distance in the induced embedding. With few
exceptions, all six end up being near semantically similar words in both languages. Identical
ranking of months in both languages in the first example suggest that aligned data brought
translations very close to one another in the induced embedding.

We ran crosslingual classification experiments training on English and testing on German
documents, varying the training data size from 100 to 10,000 documents, then repeated the
same experiments going from German to English. Classification results are summarized on
Figure 2 and a single point is detailed in Table 2. Classifiers based on distributed representations
substantially outperform all baselines. They are especially beneficial when the amount of
training data is small, effectively taking advantage of plentiful unsupervised data used for
inducing crosslingual word representations. While their performance is high relative to the
baselines, it does not change significantly with the training data size. We believe that is likely
due to relatively low embedding dimensionality (d = 40); 100 examples were sufficient to
learn a good classifier for this representation. Increasing the size of the hidden representation
is likely to improve the results. Note that these embeddings were not induced specifically for
this task. It is likely that these results would improve if we reformulate the objective with the
classification task in mind (see e.g. (Titov, 2011; Glorot et al., 2011)).
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Figure 2: Classification accuracy with three types of features: crosslingual distributed rep-
resentations (DistribReps), translated (MT), and glossed (Glossed) words, and the majority
class baseline (Majority Class). The results are for training on English and testing on German
documents (left) and vice versa (right).

6 Additional Related Work

In the last decade crosslingual methods have attracted a lot of attention both in NLP and closely
related communities such as information retrieval (Lavrenko et al., 2002) and information
management (Frederking et al., 2001). Much of this work has focused on techniques for
porting methods and resources from one language to another (see, e.g., crosslingual document
classification (Fortuna and Shawe-Taylor, 2005; Shi et al., 2010)). Development of crosslingual
models (e.g., topic models (Zhang et al., 2010; Mimno et al., 2009)) has also attracted some
attention. However, these approaches either do not induce representations of individual words
and, as such, may not be very useful for methods dealing with richer linguistic structures (such
as syntactic parsing or semantic role labeling) or they focus on porting a specific method (e.g.,
named entity recognizer (Steinberger and Pouliquen, 2007)). This contrasts significantly with
our objective: inducing fine-grain distributed word representation useful in virtually arbitrary
NLP problems.

Possibly the most related work to ours is the method for inducing crosslingual Brown clusterings
(Täckström et al., 2012). They also use multi-lingual parallel data to enforce a form of
crosslingual agreement in the induced representations. However, atomic cluster labels arguably
are not capable of encoding multiple factors or views on the syntactic and semantic properties
of words, and, consequently, may be less informative for many applications. For a detailed
comparison of properties of distributed representations and Brown clustering we refer the
reader to Turian et al. (2010).

Construction of crosslingual representations and similarity functions has also been considered
in the related area of distributional semantics (van der Plas and Tiedemann, 2006; Agirre
et al., 2009) where a word is represented as a vector and each of its components encodes
the strength of co-occurrence with a specific lexical or syntactic context (Rapp, 1995). These
representations again have very different properties from the ones considered here: for example,
they are typically very highly dimensional and, consequently, may be less useful as features in



en→ de de→ en
DistribReps 77.6 71.1
MT 68.1 67.4
Glossed 65.1 68.6
Majority-Class 46.8 46.8

Table 2: Classification accuracy for training on English and German with 1000 labeled examples.

classifiers. Also they generally cannot be created with a specific application in mind, whereas
word representations can be learned to be useful for a specific problem (Collobert and Weston,
2007).

7 Conclusions and Future Work

In this work, we propose a general method for inducing crosslingual distributed representations
for a pair of languages. We treat it as a multitask learning problem, where each task corresponds
to a word in the vocabularies of the two languages, and relatedness information between them
is estimated from word alignments in parallel data. Intuitively, task relatedness information
encoded in the interaction matrix A is used to align the representations in both languages as
we learn them. Words in either language that are similar to each other end up being “close”
in the joint representation. However, since aligned resources may not be available for a given
language pair, an investigation of robustness of our setup to the amount of parallel data as well
as using alternative resources to define A is an interesting future direction.

Distributed representations of multi-word expressions (phrases) have recently been shown very
useful for sentiment analysis (Socher et al., 2011b). Inducing these representations in multiple
languages is likely to benefit tasks like low-resource machine translation (Klementiev et al.,
2012) where it could potentially be used to both induce phrase tables and score them with little
parallel data.

We showed that crosslingual representations are very informative for crosslingual document
classification, where they can be used to directly apply a classifier trained on data in one
language to test data in another. Classification accuracy is likely to improve if we were to
learn these representations specifically for the task, which would require a small change to the
learning objective. Applying our framework with the specific goal of building a state-of-the-art
classifier is also an interesting future direction.
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