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ABSTRACT
When performing any real-time detection task, such as face
detection, speech recognition, etc., we can take advantage
of the temporal correlations within the data stream. This
can help us make detection more robust by using anticipa-
tions about the target to overcome the variance due to noise.
We present an extended self-organized map that uses lateral
weights between the nodes to learn temporal relations be-
tween clusters. These weights are then used during recog-
nition to bias certain nodes to win the competition. This
converts the self-organized map from a maximum likeli-
hood to a maximum a posteriori estimator. We present an
experiment using artificial data to demonstrate the benefit
of the anticipatory self-organized map.
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1 Introduction

Real-time object detection is a very desirable capability for
robotic agents, surveillance systems, etc. However, it has
proven to be very challenging to implement because small
changes in lighting, object orientation, position etc. can
cause large changes in the observed signals. (See [1] for a
good overview.) Most approaches to robust detection have
concentrated on extracting features that are robust to such
changes ([2],[3],[4],[5]). However, the temporal aspect of
the problem is often overlooked. We can take advantage
of the fact that targets tend to persist in the same location
over short periods of time to make existing recognition sys-
tems more robust to noise. The anticipatory self-organized
map (SOM) we present here clusters feature vectors in the
usual manner. These may be feature vectors obtained from
another detection algorithm, such as [3]. It then does a
second stage of learning, where it learns lateral weights be-
tween the SOM nodes. These lateral weights are used to
anticipate the most likely winning node for the next time
step. Consequently, the anticipatory SOM can cluster the
input not only on the basis of the current input, but also on
the basis of the recent history of inputs. We will show that
this leads to more robust detection because the SOM now

performs maximum a posteriori classification.
The rest of this paper is organized as follows. The

next section reviews other extensions of the self-organized
map into the temporal domain, and compares these with
our anticipatory SOM. Sections 3 and 4 provide a descrip-
tion of our model, and a Bayesian perspective on the com-
putation it is performing. Section 5 presents an experiment
with artificial data, designed to show the improved noise ro-
bustness of the anticipatory SOM. Finally we present some
conclusions and suggestions for future work.

2 Related Work

There have been several extensions to the basic self-
organized map to take time into account, such as the tempo-
ral Kohonen map (TKM) [6], the recurrent self-organized
map (RSOM) [7], [8], the contextual self-organized map
(CSOM) [9], and others [10], [11]. However most exten-
sions have focused on retrieval of the temporal sequence,
whereas our focus is on using the temporal correlations to
enable robust recognition.

The TKM and the RSOM both use leaky integrators,
though they use slightly different formulations. A leaky
integrator node decays its activation slowly once it fires.
Therefore the winning node will tend to win again in the
next time step.

Similarly, in [11], Földiák relies upon the stability of a
pattern in space and time. This allows a grouping of cells to
respond to a particular stimulus. In addition, groups of cells
that respond to similar stimuli are dynamically connected
to the same complex cell, which combines elementary fea-
tures. Here also, the temporal aspect is that a complex cell,
once activated, has a higher chance of being activated in the
subsequent time steps.

However, this only works well if the input vector cor-
responding to the stable target falls into the same cluster
every time. Small changes in target orientation, position
and lighting, though, can cause significant changes in the
input vector.

The CSOM actually augments the input vector with
a copy of the activations from the previous time step, thus
providing true recurrence. The goal is to predict the tem-
poral sequence by encoding the sequence to the required



depth in the receptive fields of the CSOM nodes.
Similarly, in [10], Barreto and Araújo looked at the

problem of learning multiple temporal sequences with
a self-organized map. They proposed learning lateral
weights between neurons, using a Hebbian rule, which are
used to encode the temporal sequence. They are also inter-
ested in explicitly recalling the temporal sequence, whereas
we merely use the lateral weights to provide a prior prob-
ability for the current time step based on the activations of
the nodes in the previous time step.

3 Model Description

The model consists of a two-dimensional self-organized
map (SOM) [12], which combines the current input with
the previous activations to determine current activations.
Training proceeds in two stages. The first stage consists
of a traditional SOM, where the activation yij(t), of node
(i, j) in the SOM, at time t, is calculated as follows:

yij(t) =
αij(t)

1 + e
−

1
βij (t)

·uij (t)
(1)

This is basically a sigmoid function with some modi-
fications. It is parameterized using βij and bij (see equation
2 so that we can fit it to the distribution of points around
each cluster center. This enables us to produce better esti-
mates of the likelihood of a point having been generated by
this cluster.

The net input, uij(t), is given by

uij(t) = wij(t) · x(t) − bij(t) (2)

where x(t) is the input vector at time t, wij(t) is the
weight vector at node (i, j) at time t, and bij(t) is the bias
input for node (i, j) at time t. The dot product provides a
measure of the distance between the weight vector and the
input vector. However, it is larger when the two vectors
are close to each other. Thus, the node with the maximum
activation is called the winning node.

The value αij(t) in equation (1) is set to 1 at this
stage. The weights are updated as follows.

wij(t + 1) = wij(t) + η · hij · x(t), ∀i,j (3)

where η is the learning rate, and hij is a neighborhood
function, given by

hij = exp(−
d2

win(i, j)

2σ2
) (4)

where dwin(i, j) is the Euclidean distance of node
(i, j) from the winning node.

After the ascending weights to a node have been up-
dated, they are normalized using the L2 norm

wijk =
wijk

‖wij‖
, ∀k (5)

The bias, bij is updated as follows:

bij(t + 1) = bij(t) + η · hij · uij(t) (6)

βij is updated as follows:

β2
ij(t + 1) = β2

ij(t) + η · hij · (u
2
ij(t) − β2

ij(t)) (7)

βij and bij are used to fit the logistic function at each
node to the distribution of points around it. βij estimates
the standard deviation, and bij estimates the mean of the
distances of the points from the cluster center.

As usual, η, the learning rate, starts out fairly large
and is decayed over time. After stage 1 training, the
weights are frozen and stage 2 training commences.

In stage 2, we augment the SOM with a set of lateral
weights, vij,kl, between all the nodes. The lateral weight
from node (i, j) to node (k, l) keeps count of the number
of times node (k, l) is the winning node in the time step
after node (i, j) is the winning node. After stage 2 training,
we normalize the outgoing lateral weights from each node
to sum to 1.

During inference, the activation yij(t) is calculated
using equation 1 as before. However, the value of αij(t)
is now calculated by multiplying the activation of each
node at the previous time step with its corresponding lat-
eral weight to the current node, and summing.

αij(t) =
∑

k,l

vij,kl(t) · ykl(t − 1) (8)

where ykl(t− 1) refers to the activation of node (k, l)
at the previous time step, and vij,kl(t) is the lateral weight
from node (k, l) to node (i, j) in the SOM at time step t.
Now we normalize the yij(t) to sum to 1.

Next we provide a Bayesian perspective on the com-
putation being performed by the SOM.

4 A Bayesian Perspective

Let P (Ni | xj) be the probability of node Ni winning the
competition when xj is presented as the input. Then, by
Bayes’ theorem,

P (Ni | xj) =
P (xj | Ni) · P (Ni)

P (xj)
(9)

Thus,

argmaxi P (Ni | xj) = argmaxi P (xj | Ni) · P (Ni)
(10)

If we consider the SOM as a generative model, the
probability of input vector xj being generated by node Ni

decreases monotonically with the distance between xj and
the weight vector at node Ni. Thus, finding the winning
node in a traditional SOM corresponds to finding the maxi-
mum likelihood winner (where the prior probability of each
node is the same).



 
 

Figure 1. The training vectors.

In the anticipatory SOM, we take advantage of the
temporal correlations between the inputs to include an esti-
mate of the prior term in the above equation, and thus com-
pute the maximum a posteriori winner. The prior probabil-
ity of any node is computed recursively as follows:

P (Ni(t)) =
∑

k

P (Ni(t) | Nk(t−1))·P (Nk(t−1)) (11)

The lateral weights estimate the conditional probabil-
ities. Therefore, calculating the prior corresponds to com-
puting the value of αij(t) in equation 8, using the activa-
tions of the nodes from the previous time step and the lat-
eral weights. Thus the lateral weights, vij,kl(t), correspond
to the conditional probabilities, and the activation of the
node from the previous time step corresponds to the prior
probability.

5 Results

We designed an experiment to demonstrate the improved
noise tolerance of the anticipatory SOM, compared to a tra-
ditional SOM.

The training set consisted of the four points or vec-
tors in two dimensions shown in figure 1. The four vectors
were divided into two groups, A and B. Group A consisted
of vectors X and W, and group B consisted of vectors Y
and Z. At each time step, one of the vectors was chosen
randomly to be presented to the SOM. Temporal correla-
tions were introduced into the data stream by increasing
the probability of a vector from a group being chosen if a
vector from the same group had been chosen in the previ-
ous time step. A noisy version of the vector was generated
by picking the actual input vector from a circular Gaussian
centered at the chosen vector.

An anticipatory SOM and a traditional SOM were
trained with this data stream for 50000 time steps. After

 
 

Figure 2. Some of the lateral weights between the nodes.
Since the lateral weight matrix turns out to be quite sym-
metric, not all the weights are shown. Note that the nodes
corresponding to group A (vectors X and W) are strongly
linked to each other, and the nodes corresponding to group
B (vectors Y and Z) are strongly linked to each other.

training, the SOM nodes were labeled as either A or B, de-
pending on to which group’s vectors they responded max-
imally. Figure 2 labels the nodes of the anticipatory SOM,
including the vectors to which they respond maximally in
parentheses. The links between the nodes show the lateral
weights. We see that the nodes corresponding to vectors
from the same group have strong lateral weights connect-
ing them.

For testing, we create two new vectors X
′

and Y
′

,
which are noisy versions of X and Y. By design, they are
noisy enough to fall into the receptive field of a node be-
longing to the other group (Y and X respectively). Now,
the data stream is generated using the same statistics as be-
fore, except that X is substituted with X

′

and Y is substi-
tuted with Y

′

. We expect the regular SOM to misclassify
each occurrence of these vectors, whereas the anticipatory
SOM should classify them correctly if it has the right con-
text. The context is provided by the Z and W vectors, i.e. if
X

′

appears in the time step after W, it should be classified
correctly by the anticipatory SOM, but not by the regular
SOM. The same goes for Y

′

and Z also. Figure 3 shows
the results of testing. The results are the average of 10 runs.
We see that the anticipatory SOM significantly outperforms
the regular SOM. Actually, the regular SOM never classi-
fies a vector correctly that the anticipatory SOM does not
classify correctly.

6 Conclusions and Discussion

By transforming the self-organized map from a maximum
likelihood estimator to a maximum a posteriori estimator,
we show that we can make it much more robust to noise.
By exploiting the temporal correlations in the data stream
we can include an estimate of the prior probabilities. It is
important to note that the estimation of prior probabilities



 
 

Figure 3. Performance on artificial data. We see that the
anticipatory SOM significantly outperforms the traditional
SOM

does not have to be done in this way. For example, in 11 we
make the Markovian assumption. We could, instead, con-
sider an arbitrarily long history. Many more sophisticated
approaches are possible, such as Kalman filters, which have
been used to model the visual system [13]. Another inter-
esting effect of including the priors is that a high prior on a
node corresponds to a temporarily expanded receptive field,
a phenomenon which has been reported in the neuroscience
literature [14].

Many interesting applications are possible. Any ap-
plication which involves sequential processing could use
the anticipatory SOM. An obvious example is face detec-
tion in a video stream. There are several good face detec-
tion systems available already, such as [3]. However, they
only work well if the person is looking directly at the cam-
era. Turning the head or tilting the head slightly causes the
face detection system to lose the face. In this situation, the
idea of temporal persistence of faces in the environment
could easily be used to provide anticipations. Our antici-
patory SOM could be used in conjunction with such a face
detection system to improve it’s performance. We intend to
do just this using the Illinois Self-Aiming Camera [15], in
order to provide it with robust face detection capabilities.
The Illinois Self-Aiming Camera is a device being devel-
oped by us to model the superior colliculus and to test our
ideas about multisensory integration and sensor fusion. We
intend to make it more sophisticated and brain-like by in-
cluding semantic modules such as face detection, voice de-
tection etc. Many of these could use the anticipatory SOM
to do robust recognition.
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